15,757 research outputs found

    The entanglement dynamics of interacting qubits embedded in a spin environment with Dzyaloshinsky-Moriya term

    Full text link
    We investigate the entanglement dynamics of two interacting qubits in a spin environment, which is described by an XY model with Dzyaloshinsky-Moriya (DM) interaction. The competing effects of environmental noise and interqubit coupling on entanglement generation for various system parameters are studied. We find that the entanglement generation is suppressed remarkably in weak-coupling region at quantum critical point (QCP). However, the suppression of the entanglement generation at QCP can be compensated both by increasing the DM interaction and by decreasing the anisotropy of the spin chain. Beyond the weak-coupling region, there exist resonance peaks of concurrence when the system-bath coupling equals to external magnetic field. We attribute the presence of resonance peaks to the flat band of the self-Hamiltonian. These peaks are highly sensitive to anisotropy parameter and DM interaction.Comment: 8 pages, 9 figure

    Behavioral analysis of anisotropic diffusion in image processing

    Get PDF
    ©1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/83.541424In this paper, we analyze the behavior of the anisotropic diffusion model of Perona and Malik (1990). The main idea is to express the anisotropic diffusion equation as coming from a certain optimization problem, so its behavior can be analyzed based on the shape of the corresponding energy surface. We show that anisotropic diffusion is the steepest descent method for solving an energy minimization problem. It is demonstrated that an anisotropic diffusion is well posed when there exists a unique global minimum for the energy functional and that the ill posedness of a certain anisotropic diffusion is caused by the fact that its energy functional has an infinite number of global minima that are dense in the image space. We give a sufficient condition for an anisotropic diffusion to be well posed and a sufficient and necessary condition for it to be ill posed due to the dense global minima. The mechanism of smoothing and edge enhancement of anisotropic diffusion is illustrated through a particular orthogonal decomposition of the diffusion operator into two parts: one that diffuses tangentially to the edges and therefore acts as an anisotropic smoothing operator, and the other that flows normally to the edges and thus acts as an enhancement operator
    • …
    corecore