1,385 research outputs found

    Identifying HER2 Inhibitors from Natural Products Database

    Get PDF
    The relationship between abnormal HER2 expression and cancer is important in cancer therapeutics. Formation and spread of cancer cells may be restricted by inhibiting HER2. We conducted ligand-based and structure-based studies to assess the potency of natural compounds as potential HER2 inhibitors. Multiple linear regression (MLR) and support vector machine (SVM) models were constructed to predict biological activities of natural compounds, and molecular dynamics (MD) was used to assess their stability with HER2 under a dynamic environment. Predicted bioactivities of the natural compounds ranged from 6.014–9.077 using MLR (r[superscript 2] = 0.7954) and 5.122–6.950 using SVM (r[superscript 2] = 0.8620). Both models were in agreement and suggest bioactivity based on candidate structure. Conformation changes caused by MD favored the formation of stabilizing H-bonds. All candidates had higher stability than Lapinatib, which may be due to the number and spatial distribution of additional H-bonds and hydrophobic interactions. Amino acids Lys724 and Lys736 are critical for binding in HER2, and Thr798, Cys805, and Asp808 are also important for increased stability. Candidates may block the entrance to the ATP binding site located within the inner regions and prevent downstream activation of HER2. Our multidirectional approach indicates that the natural compounds have good ligand efficacy in addition to stable binding affinities to HER2, and should be potent candidates of HER2 inhibitors. With regard to drug design, designing HER2 inhibitors with carboxyl or carbonyl groups available for H-bond formation with Lys724 and Lys736, and benzene groups for hydrophobic contact with Cys805 may improve protein-ligand stability.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University and Asia University (CMU98-TCM)China Medical University and Asia University (CMU99-TCM)China Medical University and Asia University (CMU99-S-02)China Medical University and Asia University (CMU99-ASIA-25)China Medical University and Asia University (CMU99-ASIA-26)China Medical University and Asia University (CMU99-ASIA-27)China Medical University and Asia University (CMU99-ASIA-28)Taiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    Effective Proactive and Reactive Defense Strategies against Malicious Attacks in a Virtualized Honeynet

    Get PDF
    Virtualization plays an important role in the recent trend of cloud computing. It allows the administrator to manage and allocate hardware resources flexibly. However, it also causes some security issues. This is a critical problem for service providers, who simultaneously strive to defend against malicious attackers while providing legitimate users with high quality service. In this paper, the attack-defense scenario is formulated as a mathematical model where the defender applies both proactive and reactive defense mechanisms against attackers with different attack strategies. In order to simulate real-world conditions, the attackers are assumed to have incomplete information and imperfect knowledge of the target network. This raises the difficulty of solving the model greatly, by turning the problem nondeterministic. After examining the experiment results, effective proactive and reactive defense strategies are proposed. This paper finds that a proactive defense strategy is suitable for dealing with aggressive attackers under “winner takes all” circumstances, while a reactive defense strategy works better in defending against less aggressive attackers under “fight to win or die” circumstances

    Performance evaluation of lossy quality compression algorithms for RNA-seq data

    Get PDF
    Background Recent advancements in high-throughput sequencing technologies have generated an unprecedented amount of genomic data that must be stored, processed, and transmitted over the network for sharing. Lossy genomic data compression, especially of the base quality values of sequencing data, is emerging as an efficient way to handle this challenge due to its superior compression performance compared to lossless compression methods. Many lossy compression algorithms have been developed for and evaluated using DNA sequencing data. However, whether these algorithms can be used on RNA sequencing (RNA-seq) data remains unclear. Results In this study, we evaluated the impacts of lossy quality value compression on common RNA-seq data analysis pipelines including expression quantification, transcriptome assembly, and short variants detection using RNA-seq data from different species and sequencing platforms. Our study shows that lossy quality value compression could effectively improve RNA-seq data compression. In some cases, lossy algorithms achieved up to 1.2-3 times further reduction on the overall RNA-seq data size compared to existing lossless algorithms. However, lossy quality value compression could affect the results of some RNA-seq data processing pipelines, and hence its impacts to RNA-seq studies cannot be ignored in some cases. Pipelines using HISAT2 for alignment were most significantly affected by lossy quality value compression, while the effects of lossy compression on pipelines that do not depend on quality values, e.g., STAR-based expression quantification and transcriptome assembly pipelines, were not observed. Moreover, regardless of using either STAR or HISAT2 as the aligner, variant detection results were affected by lossy quality value compression, albeit to a lesser extent when STAR-based pipeline was used. Our results also show that the impacts of lossy quality value compression depend on the compression algorithms being used and the compression levels if the algorithm supports setting of multiple compression levels. Conclusions Lossy quality value compression can be incorporated into existing RNA-seq analysis pipelines to alleviate the data storage and transmission burdens. However, care should be taken on the selection of compression tools and levels based on the requirements of the downstream analysis pipelines to avoid introducing undesirable adverse effects on the analysis results. Document type: Articl
    • …
    corecore