
Yu et al. BMC Bioinformatics          (2020) 21:321 
https://doi.org/10.1186/s12859-020-03658-4

METHODOLOGY ARTICLE Open Access

Performance evaluation of lossy quality
compression algorithms for RNA-seq data
Rongshan Yu1, Wenxian Yang1,2 and Shun Wang2*

*Correspondence:
wangshun@aginome.com
2Aginome Scientific, 316005
Xiamen, China
Full list of author information is
available at the end of the article

Abstract

Background: Recent advancements in high-throughput sequencing technologies
have generated an unprecedented amount of genomic data that must be stored,
processed, and transmitted over the network for sharing. Lossy genomic data
compression, especially of the base quality values of sequencing data, is emerging as
an efficient way to handle this challenge due to its superior compression performance
compared to lossless compression methods. Many lossy compression algorithms have
been developed for and evaluated using DNA sequencing data. However, whether
these algorithms can be used on RNA sequencing (RNA-seq) data remains unclear.

Results: In this study, we evaluated the impacts of lossy quality value compression on
common RNA-seq data analysis pipelines including expression quantification,
transcriptome assembly, and short variants detection using RNA-seq data from
different species and sequencing platforms. Our study shows that lossy quality value
compression could effectively improve RNA-seq data compression. In some cases, lossy
algorithms achieved up to 1.2-3 times further reduction on the overall RNA-seq data
size compared to existing lossless algorithms. However, lossy quality value compression
could affect the results of some RNA-seq data processing pipelines, and hence its
impacts to RNA-seq studies cannot be ignored in some cases. Pipelines using HISAT2
for alignment were most significantly affected by lossy quality value compression, while
the effects of lossy compression on pipelines that do not depend on quality values, e.g.,
STAR-based expression quantification and transcriptome assembly pipelines, were not
observed. Moreover, regardless of using either STAR or HISAT2 as the aligner, variant
detection results were affected by lossy quality value compression, albeit to a lesser
extent when STAR-based pipeline was used. Our results also show that the impacts of
lossy quality value compression depend on the compression algorithms being used and
the compression levels if the algorithm supports setting of multiple compression levels.
(Continued on next page)
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Conclusions: Lossy quality value compression can be incorporated into existing
RNA-seq analysis pipelines to alleviate the data storage and transmission burdens.
However, care should be taken on the selection of compression tools and levels based
on the requirements of the downstream analysis pipelines to avoid introducing
undesirable adverse effects on the analysis results.

Keywords: RNA-seq, Lossy compression, Base quality

Background
In recent years, high-throughput genome sequencing has become an essential tool in
biomedical and medical research with a wide range of applications in basic biomedi-
cal research, clinical diagnostic, drug discovery, forensic medicine, etc. The fast growing
applications of genomic data have produced a large amount of sequencing data, for
which efficient and effective data compression technologies are desired to cope with the
corresponding growth in data storage and transmission costs.
To address such a need, genomic data compression algorithms have been proposed in

the literature [1]. Many of these algorithms use a reference-based method where instead
of the raw sequence data, alignments and mismatches of the reads against a standard
reference sequence are coded [2, 3]. By using reference-based approaches, the nucleotide
sequences in the reads can be heavily compressed. As a result, the base quality values,
which carry information about the likelihood of each base call being in error, become
the major component in the compressed sequencing data due to their high entropy. It
was reported that base quality values can take up to 80% of a losslessly compressed file
in size [4].
To further improve the data size reduction rate of genomic data compression, lossy

compression algorithms of quality values [5, 6] have been proposed, where quality val-
ues were further quantized to coarse granularity to reduce the entropy. For lossy genomic
data compression, it is expected that it could bring sizable gain in terms of file size reduc-
tion over lossless compression such that the storage burden can be significantly alleviated.
Moreover, it is expected that the efficiency, accuracy, and reliability of downstream anal-
ysis should not be notably affected when lossy compression is adopted. To this end, many
algorithms use highly customized quantization schemes that incorporate biological infor-
mation from the data to maximize compression ratio without introducing significant
impacts to downstream analysis [7–9]. As a result, artifacts introduced by lossy quality
value compression to the analysis results may be both data-dependent and processing
pipeline-dependent, which have to be carefully evaluated in order to select the best com-
pression tool that achieves the desired trade-off between compression and data quality
for the target application.
As genomic data compression algorithms were designed for standard sequencing data

formats such as FASTQ and SAM, they can be used to compress both DNA and RNA
sequencing data directly. However, most existing genomic data compression algorithms
were designed for and evaluated on DNA sequencing data from whole genome sequenc-
ing (WGS), whole exome sequencing (WES) or targeted amplicon sequencing, etc. [4].
The impacts of lossy quality value compression on RNA-seq data analysis have thus far
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not been systematically evaluated in the literature, despite the increasing popularity of
RNA-seq studies in both basic biomedical research and clinical applications, and the
equivalently huge amount of sequencing data generated from RNA-seq studies [10–12].
In this paper, we provide a systematic evaluation on the impacts of lossy quality

compression on common RNA-seq data analysis pipelines including gene expression
quantification [13], transcript alternative splicing [14, 15] and short variants detection
[16, 17]. We chose four datasets from four different species and sequencing platforms in
our evaluation. We split each dataset into three equal parts, and treated the split parts
as technical replicates of one experiment under the same conditions of the same sam-
ple. This enables us to evaluate the significance level of the impact from compression
using statistical methods. Finally, analysis results from uncompressed data were used as
groundtruth in our studies to avoid possible confounding factors other than lossy quality
value compression when other external groundtruth results were used.

Results
Compression performance

The compression ratio of quality values varied depending on the datasets and the lossy
compression algorithms and their corresponding coding parameters being used (Fig. 1).
As a baseline, lossless compression using CRAM achieved a BPQ of 1.11 on SRR8499098
(the rice dataset), 0.3 for SRR1043300 (the mouse dataset), 0.436 for SRR10509596 (the
human cell line dataset), and 0.795 for SRX4122949 (the arabidopsis dataset). Strikingly,
not all lossy algorithms achieved better compression performance compared to CRAM.
For methods with a fixed compression level, Quartz achieved higher compression ratio
than CRAM only on SRR10509596 and Illumina binning (DSRC) only on SRR8499098.
On the other hand, Crumble, LEON and CALQ achieved better results than CRAM on all
four datasets. For methods where the compression level can be adjusted by input param-
eters, P-block achieved better performance compared to CRAM on all four datasets at
its highest compression level, but not at other compression levels. R-block did not reach
the lossless performance baseline on SRR1043300 even at its highest compression level in
our test. ScaleQC is a scalable compression solution that enables both lossless and lossy
compression. At lossless compression level (-p 8), it showed a comparable compression
performance to CRAM. As ScaleQC supports bit-stream level scalability, higher com-
pression ratio can be achieved by further truncating the losslessly compressed bit-stream
to lower data rates.

Fig. 1 Compression performance (BPQ) of different quality value compression algorithms. Here, average BPQ
of different compression algorithms on three technical replicates of each dataset are shown. Vertical lines
indicate BPQ of lossless quality value compression by CRAM
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As quality values occupy a significant portion of the total sequencing data file, the over-
all compressed file sizes are highly related to the sizes of quality values after compression
(Fig. 2). Overall, at the lowest BPQ values, Crumble and ScaleQC achieved further file size
reduction and the resulting file size ranges from 0.38 to 0.83 times of the size of the CRAM
lossless baseline. The highest file size reduction with regard to the lossless baseline was
achieved by Crumble on the rice dataset (SRR8499098) sequenced by HiSeq2500. On the
other hand, the mouse dataset (SRR10433000) sequenced by NovaSeq 6000 was the most
challenging dataset for lossy value compression, for which the highest file size reduction
with regard to the lossless baseline was achieved by ScaleQC at its highest compression
level. Note that this dataset has a lower BPQ when losslessly compressed by CRAM com-
pared to other datasets (Fig. 1). Interestingly, ScaleQC also achieved slightly higher overall
compression ratio compared to CRAM on the human cell line dataset (SRR10509596) at
its highest BPQ setting, where it achieved lossless quality value compression.

Alignment to reference genome

STAR [18] and HISAT2 [19] are among the most popular aligners used in RNA-seq anal-
ysis pipelines [1]. As the STAR method does not utilize base quality values for alignment,
lossy quality value compression does not affect the alignment results and the SAM files
it produces do not differ with or without lossy compression except for the base quality
values themselves. On the other hand, HISAT2 uses base quality values to calculate the
marginal penalty incurred by a mismatch at specific read positions, and the alignment
results differ if base quality values are lossy compressed.
We compared the alignment rates of HISAT2with original and lossy compressed quality

values (Fig. 3). Noticeably, the mouse dataset (SRR1043300) has relatively lower map-
ping rate (< 65%) compared to the other three datasets regardless whether the quality
values were lossy compressed or not. For all four datasets, the impact of different lossy
compression on the alignment results of HISAT2 is very small regardless of the compres-
sion ratio except for CALQ, of which the alignment rates were around 0.3% to 2% lower
than those of other algorithms. Although the difference is relatively small, such degra-
dation could be a potential origin of non-negligible adverse effects on the downstream
analysis for HISAT2-based pipelines. Crumble also introduced noticeable reduction in

Fig. 2 Overall compression ratio of Crumble and ScaleQC with respect to file sizes of original CRAM files at
different bit-per-quality values for different sequencing files. As quality values occupy a significant portion of
total sequencing data file, the overall compression ratio is highly related to the BPQ. Lossless compression
was achieved by ScaleQC at its highest BPQ
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Fig. 3 Average alignment rates of HISAT2 on three replicates of different datasets with original quality values
and quality values lossy compressed by different algorithms

the alignment rates on the human cell line dataset (SRR10509596) and the rice dataset
(SRR8499098), but to a lesser extent. Interestingly, Crumble introduced less degradation
to alignment rate at its highest compression level (-9), suggesting that it is possible to
further optimize its performance on RNA-seq data analysis at moderate compression
levels.

Gene expression quantification

The methods for gene expression quantification include alignment-based methods which
align the reads to either a reference genome (e.g., featureCounts, HTSeq-count [20])
or a reference transcriptome (e.g., Salmon, RSEM [21]), and alignment-free algorithms
which quantify expression levels by directly counting the k-mers (e.g., Kallisto [22] and
Salmon). For alignment-based methods, since gene expression quantification methods
rely on alignment information rather than base quality values, lossy quality value com-
pression will affect the quantification results only when the alignment results are affected.
In addition, quality values are not utilized in k-mer based alignment-free algorithms.
Therefore, we only considered HISAT2 + featureCounts in our evaluation.
For each dataset, we evaluated the number of genes that were identified as differen-

tially expressed (DE) after lossy quality value compression on the quantification results
from three technical replicates. Here, we analysed the variances of read counts between
and within groups of quantification results from original and lossy compressed quality
values for all the genes from each dataset, where within-group variances reflect ran-
domized effects due to sampling and pipeline processing, and between-group variances
represent the impacts of lossy compression. Significance were evaluated using one-way
ANOVA and genes with p-value smaller than 0.05 were considered as DE genes. Reads
counts were used in our benchmarking without further normalization since the total read
counts were fixed in each split samples. As shown in Fig. 4, in general, higher compres-
sion ratios led to larger number of DE genes. However, the influence of lossy quality value
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Fig. 4 Number of DE genes due to lossy compression with respect when different compression methods and
coding parameters were used in HISAT2 + featureCounts. p-values were evaluated using one-way ANOVA on
three technical replicates for each dataset. p-values smaller than 0.05 were considered as significant

compression on quantification results depends on the algorithms being used. Noticeably,
ScaleQC and LEON were able to compress the quality values with minimal influences
on gene expression quantification at high compression ratios, in particular in the rice
dataset (SRR8499098). On the other hand, CALQ, Quartz and Crumble created more
DE genes compared to other methods. We further compared DE genes of ScaleQC (-p
0.1), LEON, CALQ, Quartz and Crumble (-9) using mean-average (MA) plots (Fig. 5),
demonstrating the adverse effect of lossy compression by CALQ, Crumble and Quartz on
gene expression quantification when HISAT2 + featureCounts were used.

Alignment-based transcriptome assembly

We included two alignment-based transcriptome assembly algorithms, namely, StringTie
and Scallop, in our evaluation. Since both tools use only alignment information in their

Fig. 5 MA plot showing DE genes due to lossy compression for ScaleQC (-p 0.1), LEON, CALQ, Quartz, and
Crumble. Dots color showing p-value calculated by DeSeq, genes with lower p-values were dyed with red,
indicating significant expression differences due to lossy compression
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transcriptome assembly process, we used HISAT2 with these two tools to study the
impact of lossy compression on alignment-based transcriptome assembly. In our test,
we compared the assembled transcriptomes using GffCompare [23] against the con-
structed isoforms from data with original quality values as groundtruth. Performance was
evaluated using precision, sensitivity and F1 score defined as:
Sensitivity = TP / (TP + FN),
Precision = TP / (TP + FP),
F1 score = 2 × Sensitivity × Precision / (Sensitivity + Precision).
Here, TP (true positive) is the number of transcripts in query in agreement with the

corresponding reference, FP (false positive) is the number of transcripts in query that are
not present in the reference, and FN (false negative) is the number of transcripts that are
present in the reference but not in the query data.
Based on the results (Fig. 6 and Supplementary Figure S1), lossy compression indeed

affected the isoform reconstruction results when HISAT2 was used as aligner. In partic-
ular, the impacts were larger when Scallop was used compared to StringTie. Among all
the lossy compression algorithms, the impacts of lossy compression on the consistency
of reconstructed isoform were similar regardless of compression tools and coding param-
eters, except for CALQ which resulted in notably greater difference in reconstructed
isoforms compared to other tools.

Short variants detection

In contrast to previously evaluated RNA-seq analysis tools, short variant discovery tools,
such as the GATK HC pipeline, rely heavily on quality values in the variant discov-
ery process. For this reason, we included both aligners, STAR and HISAT2, in our
evaluation. Sensitivity and precision of SNP and Indels were evaluated using hap.py

benchmarking tools [24] as proposed by Illumina with variants discovered from uncom-
pressed sequencing data as reference. In general, higher impact on both SNP and Indels
calling results were observed when the quality values were heavily compressed (Fig. 7
and Supplementary Figure S2). In addition, compared to STAR, lower F1 scores were

Fig. 6 F1 scores of the reconstructed isoforms from lossy compressed RNA-seq data with respect to those
from uncompressed data. The shown F1 scores were averaged on three replicates of each dataset
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Fig. 7 F1 scores of variant calling results on lossy compressed RNA-seq data using those from original RNA-seq
data as groundtruth reference. The shown F1 scores were averaged on three replicates of each dataset

obtained when HISAT2 was used as aligner. Noticeably, ScaleQC and LEON brought rel-
atively small impact to the variant calling results despite their high compression ratios.
On the other hand, CALQ introduced significantly greater differences to the variant
calling results compared to other methods in most cases, in particular for the mouse
dataset (SRR1043300) where it only achieved moderate compression gains over lossless
compression compared to other tools.

Computational performance

The run-time and peak memory usage of all lossy compression algorithms on three tech-
nical replicates of human chromosome 22 extracted from SRR1050959 were shown in
Supplementary Table S3 and Supplementary Table S4, respectively. Results show that
the run-time performance and peak memory consumption vary significantly for different
algorithms. Notably, P-Block, R-Block and DSRC completed the compression and decom-
pression operations within 10 seconds while the slowest algorithm (CALQ) took about
30 and 2 minutes respectively to complete the compression and decompression opera-
tions for the same file. In terms of memory consumption, Quartz had the highest peak
memory consumption (69GB) while Crumble used only around 100MB to perform the
compression operation.
We asked if there are any effect on run-time and memory consumption of the down-

stream RNA-seq data analysis tools if the quality values are lossy compressed. Interest-
ingly, we observed that the differences in run-times and memory consumption resulting
from different lossy quality value compression algorithmswere actually smaller than those
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resulting from run-to-run variations when the same algorithm was performed on differ-
ent technical replicates (Supplementary Figure S3), indicating that the impact of lossy
quality value compression to the run-time and memory consumption of the downstream
analysis tools is negligible.

Discussion
Different RNA-seq tools show different sensitivities to lossy quality compression. For
pipelines that do not take base quality values into consideration, e.g., STAR-based
expression quantification, analysis results will be reproduced either perfectly after lossy
compression or with fluctuations that are irrelevant to quality values if the analysis pro-
cess is not deterministic. In these scenarios, quality values can be heavily compressed with
lossy compression algorithms or can be simply discarded without affecting the analysis
results. However, for pipelines that utilize quality values, such as HISAT2 and GATK HC,
lossy quality value compression should be used with care in cases where data re-analysis
is expected. Short variant discovery is usually not the top-priority application in RNA-
seq data analysis. In addition, according to our evaluation, the variations in variant calling
results from lossy compressed RNA-seq data among different compression methods were
smaller than those among replicates. Hence, we may conclude that quality values can be
compressed more aggressively for variant calling applications. However, if re-alignment
using a quality value-aware aligner such as HISAT2 is necessary, it is expected that we
should only keep the original values intact with lossless compression, or choose a lossy
compression algorithm with proper compression ratio to minimize its impact on the
alignment results.
When using lossy quality values compression on RNA-seq data, care should also be

taken to make sure that the selected tools match the characteristics of the RNA-seq data
in hand. For example, Quartz needs a bin directory which was generated according to the
human reference genome. Therefore, it does not match the characteristics of sequenc-
ing data from other species. As a result, compressing the mouse, rice, and arabidopsis
datasets using Quartz actually led to data size increments compared to lossless quality
value compression. Some lossy quality compression algorithms were developed primar-
ily for DNA sequencing data analysis. For example, CALQ used an internal statistical
model to determine the compression level of quality values from different loci accord-
ing to their significance. As the model was heavily tuned towards genotyping of DNA
sequencing data, CALQ did not perform very well in many RNA-seq tasks in our study.
LEON performed well in our benchmarking test as it delivered excellent compression
while maintained the accuracy of downstream analysis. However, it does not provide the
option to adjust the compression ratio, which makes it inconvenient when the default
model does not provide the desired compression level. ScaleQC is a promising tool for
RNA-seq data compression as it supports both lossless and lossy quality compression with
seamless integration with SAM/CRAM tools, and it provides the flexibility to truncate a
bit-stream of lower data rate from that of a higher data rate directly without expensive
transcoding. In addition, it was among the compressors that achieved the best trade-off
between the compression ratio and impacts to RNA-seq data analysis in our test.
Finally, manufacturers of sequencing platforms have already started to incorporate lossy

compression of base quality values into their sequencing hardware platforms to miti-
gate the storage burden of NGS data. For example, in April 2014, Illumina updated the
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firmware of HiSeq platforms to enable quality scores binning setting by default. More-
over, currently IlluminaNovaseq uses 2-color chemistry, and only consists of four possible
quality values which are 2, 12, 23 and 37. The effect of Illumina binning operation on
RNA-seq data analysis was studied in this paper using the DSRC implementation, which
shows that it has little impact to the downstream analysis of RNA-seq data. However, our
study suggests that sequencing data with binned quality values can be further compressed
using lossy compression schemes such as LEON or ScaleQC if further file size reduction
is desired.

Conclusion
To overcome the challenge in storage and transmission of NGS data from the increasing
production of high-throughput sequencing technologies, compression methods specific
for sequencing data have been developed. In these methods, compression of quality val-
ues is the most important contributing factor to the overall compression ratio due to the
high entropy in quality values. The recent developments in lossy quality value compres-
sion methods have brought a new angle to further decrease the data size of NGS data
beyond lossless compression. Unfortunately, most of the lossy quality value compressors
were developed for and evaluated on DNA sequencing data while their impact on RNA-
seq data analysis has yet to be elucidated. In this paper, we provide the first systematic
evaluation of existing lossy quality value compression methods on RNA-seq data analysis.
Our results reveal that it is viable to further reduce RNA-seq data size without introduc-
ing significant adverse effects to downstream analysis, and a suitable choice of the lossy
compressor and/or compression ratio parameters heavily depends on the actual pipelines
being adopted, and the target applications of the data. Furthermore, given the increas-
ing importance of RNA-seq data analysis in biomedical and clinical studies, it is desirable
that established RNA-seq data processing pipelines should be considered in the future
development of sequencing data compression algorithms to ensure the applicability of
the developed tools on both DNA and RNA sequencing data. Our study thus provides a
useful evaluation framework for this development.

Methods
In this study, we compressed the base quality values in the raw RNA-seq data using dif-
ferent lossy compression tools. The compressed quality data were then decompressed
and merged with the other fields of the original RNA-seq data to produce either FASTQ
or BAM files for re-analyzing with different pipelines (Fig. 8). The analysis results were
compared to those obtained from original data with uncompressed quality values to eval-
uate the influence of lossy quality value compression on downstream analysis. In our
tests, we further divided each evaluation dataset into three parts of same size as techni-
cal replicates, with the data amount of each part comparable to that used in conventional
RNA-seq studies. The deviation between results from different technical replicates was
then used as a baseline to benchmark the significance of the impacts brought by lossy
quality value compression to the final analysis results.

Data and reference genomes

We enrolled four datasets of four different species and platforms in our study (Supple-
mentary Table S1). Briefly, SRR10509596 was sequenced by HiSeq2000 for the HEK293T
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Fig. 8 Flowchart of the evaluation pipeline

human cell line, available from NCBI SRA (https://trace.ncbi.nlm.nih.gov/Traces/sra/?
run=SRR10509596), with a total of 35.1 billion bases. We used human hg38 as the ref-
erence genome for this dataset. Both the genome sequences and annotation files were
download from Ensembl Release 90. SRR10433000 is extracted from mouse endome-
trial epithelial cells and sequenced using NovaSeq 6000 [25], with a total of 37.2 billion
bases. Mouse reference genome mm10 was used as reference for this dataset. The
genome sequences and annotation files were also downloaded from Ensembl Release
90. SRR8499098 is HiSeq2500 transcriptome data sequenced from panicle of KitaakeX
which is a variety of the Oryza sativa japonica (rice) group, and contains a total of 32.5
billion bases [26]. Nipponbare reference genome IRGSP-1.0 was used as reference for
this dataset, and both the genome sequences and annotation files were acquired from
Ensembl Plants Release 45. SRX4122949 is a combination of two SRA runs SRR7216027
and SRR7216027, with totally 32 billion bases [27]. This dataset contains transcriptome
data sequenced from leaf samples of Arabidopsis thaliana (Columbia accession) using
HiSeq X Ten. Reference genome TAIR10 was selected, and both the genome sequences
and annotation files were downloaded from Ensembl Plants Release 45.
Quality control (QC) for all datasets was performed using fastp (v0.19.6) [28] before

downstream analysis with parameters “-5 -3 -r -M 20 -q 20”. In addition, “-l
100” was used for the human (SRR10509596), rice (SRR8499098) and arabidopsis
(SRX4122949) datasets to set the minimum read length to 100 after trimming. For the
mouse dataset (SRR10433000), “-l 80” was used instead since the read length of origi-
nal data is only 100. Quality information of the original reads and reads after QC is listed
in Supplementary Table S1.
Finally, reads in each dataset were divided equally into three parts (A, B and C) by

round-robin before further analysis.

Data compression

We included eight different lossy quality value compression algorithms (LEON [29],
DSRC [30], Quartz [31], CALQ [8], P-block and R-block [6], Crumble [9] and ScaleQC

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR10509596
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR10509596
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[32]) in our evaluation. Briefly, for compression tools that accept raw genomic sequenc-
ing files in FASTQ format such as LEON, DSRC and Quartz, the original FASTQ files
were used as input. Otherwise, for tools that accept aligned reads in SAM format, includ-
ing CALQ, P-block, R-block, Crumble and ScaleQC, the original reads were aligned to
their respective reference genome using HISAT2 [19] before compression. Some algo-
rithms support different compression levels through adjusting the corresponding coding
parameters. For these algorithms, compression results from the suggested set of coding
parameters in the original papers were included in our evaluation.
The output compressed files from these compression tools need to be processed dif-

ferently to obtain the bit-stream sizes of the compressed quality values. Crumble outputs
BAM files which can be further compressed into .cram files using CRAM (by “samtools
view”) as suggested in the original paper [9]. ScaleQC also provides an output file that is
compatible with CRAM. Quality binning algorithms such as DSRC directly output mod-
ified quality values with reduced entropy, which can be further compressed into .cram
files. For these tools, the bit-stream size of compressed quality values can be obtained
usingcram_size available from the CRAM software package. Quartz outputs .fastq files
with replaced base quality values. As recommended by the author [31], we used bzip2

with default parameters to further compress the .qual files into .qual.bz2 files. Other tools
output a bit-stream file containing only the compressed quality values in their own for-
mats, e.g., CALQ outputs .cq files while P-block and R-block output .cqual files. For these
tools, the bit-stream size of compressed quality values is the size of the compressed file in
bytes which can be obtained by “wc -c file”. For LEON, the compressed quality values
are embedded with other data fields in its own file format and are not accessible. There-
fore, we retrieved its quality compression ratio from the log file after compression. Finally,
the bit-stream sizes were converted to bits-per-quality (BPQ) values which denote the
average number of bits used to encode a base quality value in the compressed bit-stream.
After compression and decompression, in case the decompressed quality values were

stored with aligned reads in SAM format, the reads were converted back to FASTQ file
format using “samtools fastq” for further processing.

RNA-seq data analysis

We used the RNA-seq data processing tools encapsulated in the RNA-cocktail toolk-
its docker image (v0.3.1) [33] in our experiments with default parameters from the
accompany RNA-cocktail scripts unless specified otherwise. All the processing pipelines
were organized using Nextflow [34]. First, reads were aligned to corresponding refer-
ence genomes using either STAR (v2.6.1b) or HISAT2 (v2.1.0). We added “-quantMode
TranscriptomeSAM” to the options of STAR so that transcript alignment results can
be exported simultaneously with genome mapping. HISAT2 was called through the
“run_rnacocktail.py align” command from the RNA-cocktail toolkits.
Subsequently, we used featureCounts (v2.0.0) [35] for alignment-based quantification,

and StringTie (v2.0.4) [20] and Scallop (v0.10.4) [36] to detect the transcriptome isoforms
base on the alignment results from HISAT2 and STAR. SNPs and Indels were detected
through the “run_rnacocktail.py variant” command from the RNA-cocktail
toolkit with recommended parameters, which encapsulates the GATK’s Best Practice
pipeline [16] on detecting RNA-seq short variants using GATK Haplotype Caller (HC)
(v4.1.4.0). For SRR10509596, the human cell line dataset, we used dbSNP v151 as input to
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the base recalibration process. For the other three datasets, the base recalibration process
was skipped.

Run-time andmemory consumption evaluation

To evaluate the processing time and memory expense of different lossy quality value
compression algorithms and downstream analysis tools on RNA-seq data with lossy-
compressed quality values, we used reads mapped to chromosome 22 of hg38 reference
genome extracted from SRR1050959 (the human cell line dataset) as input data (Sup-
plementary Table S2). All compression tools were tested in a docker container with the
number of CPU threads limited to four.Memory consumptions of compression tools were
collected using the top command of the Linux OS every 1 second and the peak memory
consumptions were recorded for each tool. CPU run-times were also collected from log
files produced by top. For RNA-seq data analysis tools, we collected the CPU run-time
and peak memory consumption directly from Nextflow with the number of CPU threads
limited to six for each container.
All the software tools were run on a single server with dual Intel Xeon E5 2696 v4

(2.2GHz, 88 threads in total), 512 GB DDR4 RAM, quad stripped raid 10 hard disk with
8TB available capacity in total running Ubuntu 16.04.
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Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03658-4.

Additional file 1: Supplementary Data for “Performance evaluation of lossy quality compression algorithms for
RNA-seq data”. Supplementary information on software tools, datasets, and additional results in Tables and Figures.
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