2,536 research outputs found

    Least Squares Support Vector Machine Regression with Equality Constraints

    Get PDF
    AbstractIn regression problems sometimes we may know a prior that some data is noiseless or the approximated function must passes through several points. In order to resolve these problems, the LS-SVM regression with equality constraints is proposed. The experimental results proved that our method is effective

    Valid Physical Processes from Numerical Discontinuities in Computational Fluid Dynamics

    Full text link
    Due to the limited cell resolution in the representation of flow variables, a piecewise continuous initial reconstruction with discontinuous jump at a cell interface is usually used in modern computational fluid dynamics methods. Starting from the discontinuity, a Riemann problem in the Godunov method is solved for the flux evaluation across the cell interface in a finite volume scheme. With the increasing of Mach number in the CFD simulations, the adaptation of the Riemann solver seems introduce intrinsically a mechanism to develop instabilities in strong shock regions. Theoretically, the Riemann solution of the Euler equations are based on the equilibrium assumption, which may not be valid in the non-equilibrium shock layer. In order to clarify the flow physics from a discontinuity, the unsteady flow behavior of one-dimensional contact and shock wave is studied on a time scale of (0~10000) times of the particle collision time. In the study of the non-equilibrium flow behavior from a discontinuity, the collision-less Boltzmann equation is first used for the time scale within one particle collision time, then the direct simulation Monte Carlo (DSMC) method will be adapted to get the further evolution solution. The transition from the free particle transport to the dissipative Navier-Stokes (NS) solutions are obtained as an increasing of time. The exact Riemann solution becomes a limiting solution with infinite number of particle collisions. For the high Mach number flow simulations, the points in the shock transition region, even though the region is enlarged numerically to the mesh size, should be considered as the points inside a highly non-equilibrium shock layer

    Automating Intersection Marking Data Collection and Condition Assessment at Scale With An Artificial Intelligence-Powered System

    Get PDF
    Intersection markings play a vital role in providing road users with guidance and information. The conditions of intersection markings will be gradually degrading due to vehicular traffic, rain, and/or snowplowing. Degraded markings can confuse drivers, leading to increased risk of traffic crashes. Timely obtaining high-quality information of intersection markings lays a foundation for making informed decisions in safety management and maintenance prioritization. However, current labor-intensive and high-cost data collection practices make it very challenging to gather intersection data on a large scale. This paper develops an automated system to intelligently detect intersection markings and to assess their degradation conditions with existing roadway Geographic information systems (GIS) data and aerial images. The system harnesses emerging artificial intelligence (AI) techniques such as deep learning and multi-task learning to enhance its robustness, accuracy, and computational efficiency. AI models were developed to detect lane-use arrows (85% mean average precision) and crosswalks (89% mean average precision) and to assess the degradation conditions of markings (91% overall accuracy for lane-use arrows and 83% for crosswalks). Data acquisition and computer vision modules developed were integrated and a graphical user interface (GUI) was built for the system. The proposed system can fully automate the processes of marking data collection and condition assessment on a large scale with almost zero cost and short processing time. The developed system has great potential to propel urban science forward by providing fundamental urban infrastructure data for analysis and decision-making across various critical areas such as data-driven safety management and prioritization of infrastructure maintenance

    Why Do Customers Buy Products on Social Commerce Platform? A Study from Affordance Theory

    Get PDF
    This study examines the influence mechanism of the factors of influencing live streaming shopping which is a new social commerce mode for customer purchase based on the affordance theory. Our research examines how visibility affordance, metavoicing affordance and guidance shopping affordance which are three main affordances in live streaming shopping influence the customers’ purchase intention. The results show that visibility affordance, metavoicing affordance and guidance shopping affordance will positively impact customer purchase intention. And our research is of great help in live streaming shopping research in social commerce research field. Also, our research provides some advices for social commerce operators

    SOL-NeRF:Sunlight Modeling for Outdoor Scene Decomposition and Relighting

    Get PDF
    Outdoor scenes often involve large-scale geometry and complex unknown lighting conditions, making it difficult to decompose them into geometry, reflectance and illumination. Recently researchers made attempts to decompose outdoor scenes using Neural Radiance Fields (NeRF) and learning-based lighting and shadow representations. However, diverse lighting conditions and shadows in outdoor scenes are challenging for learning-based models. Moreover, existing methods may produce rough geometry and normal reconstruction and introduce notable shading artifacts when the scene is rendered under a novel illumination. To solve the above problems, we propose SOL-NeRF to decompose outdoor scenes with the help of a hybrid lighting representation and a signed distance field geometry reconstruction. We use a single Spherical Gaussian (SG) lobe to approximate the sun lighting, and a first-order Spherical Harmonic (SH) mixture to resemble the sky lighting. This hybrid representation is specifically designed for outdoor settings, and compactly models the outdoor lighting, ensuring robustness and efficiency. The shadow of the direct sun lighting can be obtained by casting the ray against the mesh extracted from the signed distance field, and the remaining shadow can be approximated by Ambient Occlusion (AO). Additionally, sun lighting color prior and a relaxed Manhattan-world assumption can be further applied to boost decomposition and relighting performance. When changing the lighting condition, our method can produce consistent relighting results with correct shadow effects. Experiments conducted on our hybrid lighting scheme and the entire decomposition pipeline show that our method achieves better reconstruction, decomposition, and relighting performance compared to previous methods both quantitatively and qualitatively.</p
    • …
    corecore