103 research outputs found

    Autoimmunity-related demyelination in infection by Japanese encephalitis virus

    Get PDF
    Japanese encephalitis (JE) virus is the most common cause of epidemic viral encephalitis in the world. The virus mainly infects neuronal cells and causes an inflammatory response after invasion of the parenchyma of the brain. The death of neurons is frequently observed, in which demyelinated axons are commonly seen. The mechanism that accounts for the occurrence of demyelination is ambiguous thus far. With a mouse model, the present study showed that myelin-specific antibodies appeared in sera, particularly in those mice with evident symptoms. Meanwhile, specific T cells proliferating in response to stimulation by myelin basic protein (MBP) was also shown in these mice. Taken together, our results suggest that autoimmunity may play an important role in the destruction of components, e.g., MBP, of axon-surrounding myelin, resulting in demyelination in the mouse brain after infection with the JE virus

    Online Control of Smart Inverter for Photovoltaic Power Generation Systems in a Smart Grid

    Get PDF
    The main purpose of this study is to engage in research on a grid-connected photovoltaic (PV) power generation system smart inverter. The research content includes a smart maximum power point tracking (MPPT) controller and an inverter with power regulation. First, use the PSIM software package to establish the simulation environment of the grid-connected photovoltaic power generation system and use the Sanyo HIP-186BA19 photovoltaic module to form a 744 W system for simulation. In order to enable the photovoltaic module array (PVMA) to output the maximum power under different solar insolation and ambient temperature, the architecture is based on the extension theory-based smart MPPT method to improve the dynamic response and steady-state performance of photovoltaic power generation systems compared to perturb and observed (P&O) MPPT. When the sunshine is 1,000 W/m2, the photovoltaic power generation system adopts the extension theory-based maximum power tracking method. The time required to track the maximum power point is only 0.32 s, and the steady-state ripple is only 4.127 W. However, using the traditional P&O method requires 0.741 s to track the maximum power point, and the steady-state ripple reaches 18.131 W. Thus, the dynamic response speed of the maximum power tracking method proposed is 50% faster than that of the P&O method. The steady-state performance is also better compared to the P&O method. At the same time, a simple proportional-integral (PI) controller is used to regulate the DC-link voltage, output voltage, and current of the inverter to make the voltage of the grid-connected point stable at an effective value of 220 V. Then, the voltage-power control technology is added to the photovoltaic grid-connected inverter, and a simple proportional-integral controller is used to regulate the output of the smart inverter reactive power to improve the power quality of grid voltage. Finally, simulation and experimental results are used to verify the effectiveness of the regulation performance of the developed smart inverter

    Targeting F-Box Protein Fbxo3 Attenuates Lung Injury Induced by Ischemia-Reperfusion in Rats

    Get PDF
    Background: Increasing evidence suggests that Fbxo3 signaling has an important impact on the pathophysiology of the inflammatory process. Fbxo3 protein inhibition has reduced cytokine-driven inflammation and improved disease severity in animal model of Pseudomonas-induced lung injury. However, it remains unclear whether inhibition of Fbxo3 protein provides protection in acute lung injury induced by ischemia-reperfusion (I/R). In this study, we investigated the protective effects of BC-1215 administration, a Fbxo3 inhibitor, on acute lung injury induced by I/R in rats.Methods: Lung I/R injury was induced by ischemia (40 min) followed by reperfusion (60 min). The rats were randomly assigned into one of six experimental groups (n = 6 rats/group): the control group, control + BC-1215 (Fbxo3 inhibitor, 0.5 mg/kg) group, I/R group, or I/R + BC-1215 (0.1, 0.25, 0.5 mg/kg) groups. The effects of BC-1215 on human alveolar epithelial cells subjected to hypoxia-reoxygenation (H/R) were also examined.Results: BC-1215 significantly attenuated I/R-induced lung edema, indicated by a reduced vascular filtration coefficient, wet/dry weight ratio, lung injury scores, and protein levels in bronchoalveolar lavage fluid (BALF). Oxidative stress and the level of inflammatory cytokines in BALF were also significantly reduced following administration of BC-1215. Additionally, BC-1215 mitigated I/R-stimulated apoptosis, NF-κB, and mitogen-activated protein kinase activation in the injured lung tissue. BC-1215 increased Fbxl2 protein expression and suppressed Fbxo3 and TNFR associated factor (TRAF)1–6 protein expression. BC-1215 also inhibited IL-8 production and NF-κB activation in vitro in experiments with alveolar epithelial cells exposed to H/R.Conclusions: Our findings demonstrated that Fbxo3 inhibition may represent a novel therapeutic approach for I/R-induced lung injury, with beneficial effects due to destabilizing TRAF proteins

    Gender Difference of Alanine Aminotransferase Elevation May Be Associated with Higher Hemoglobin Levels among Male Adolescents

    Get PDF
    BACKGROUND: To explore the gender difference of ALT elevation and its association with high hemoglobin levels. METHODS: A cross-sectional study of 3547 adolescents (2005 females, mean age of 16.5?.3 years) who were negative for hepatitis B surface antigen received health checkups in 2006. Body mass index (BMI), levels of hemoglobin, ALT and cholesterol were measured. ALT >42 U/L was defined as elevated ALT. Elevated ALT levels were detected in 112 of the 3547 participants (3.3%), more prevalent in males than in females (5.4% vs. 1.4%, p<0.001). Hemoglobin levels had a significant linear correlation with ALT levels in both genders. Abnormal ALT started to occur if hemoglobin >11 g/dl in females or >13.5 g/dl in males, but the cumulative cases of elevated ALT increased more quickly in males. Proportion of elevated ALT increased as either the BMI or hemoglobin level rise, more apparent in male adolescents. Logistic regression modeling showed odds ratio (95% confidence interval) were 24.7 (15.0-40.6) for BMI ≥27 kg/m(2); 5.5 (2.9-10.4) for BMI 24-27 kg/m(2); 2.7 (1.3-5.5) for Q5 (top 20th percentile) hemoglobin level; and 2.6 (1.6-4.1) for male gender. Further separately fitting the logistic models for two genders, the significance of Q5 hemoglobin level only appeared in the males. CONCLUSIONS: High hemoglobin level is a significant risk factor of ALT elevation after control hepatitis B, obesity and gender. Males have greater risk of abnormal liver function which may be associated with higher hemoglobin levels

    A TDMA-based Bandwidth Reservation Protocol for QoS Routing in a Wireless Mobile Ad Hoc Network

    No full text
    This paper considers the bandwidth reservation problem in a mobile ad hoc network (MANET) to support QoS (quality-of-service) routing. We approach this problem by assuming a common channel shared by all hosts under a TDMA (Time Division Multiple Access) channel model. Existing solutions have addressed this problem by assuming a stronger multi-antenna model [3], [6], where the bandwidth of a link is independent of the transmitting/receiving activities of its neighboring links, or a less stronger CDMA-over-TDMA channel model [7], where the use of a time slot on a link is only dependent of the status of its one-hop neighboring links. While more practical and less costly, using a TDMA model needs to face the challenge of radio interference problems. In this paper, we propose a new protocol that can reserve routes by addressing both the hidden-terminal and exposed-terminal problems. The protocol can conduct accurate bandwidth calculation while performing route discovery. Simulation results are presented to verify how this new protocol performs

    Land vs. water HIIE effects on muscle oxygenation and physiological parameter responses in postmenopausal women

    No full text
    [[abstract]]Muscle oxygenation (MO) status is the dynamic balance between O2 utilization and O2 delivery. Low-impact high-intensity interval exercise MO responses in the exercise and recovery stage are still unclear. We compared the differences in MO and physiological parameters between high-intensity interval water-based exercise (WHIIE) and high-intensity interval land bike ergonomic exercise (LBEHIIE) in postmenopausal women. Eleven postmenopausal women completed WHIIE or LBEHIIE in counter-balanced order. Eight sets were performed and each exercise set included high intensity with 80% heart rate reserve (HRR) in 30 s and dynamic recovery with 50% HRR in 90 s. Muscle tissue oxygen saturation index (TSI), total hemoglobin (tHb), oxy-hemoglobin (O2Hb), and deoxy-hemoglobin (HHb) were recorded. Blood lactate, heart rate and rating of perceived exertion (RPE) were measured at pre and post-exercise. Under similar exercise intensity, RPE in WHIIE was lower than that in LBEHIIE. The heart rate in WHIIE was lower than that in LBEHIIE at 1 and 2 min post-exercise. During the dynamic recovery, TSI, tHb, and O2Hb in water were higher than on land. A negative correlation was found between the change in TSI and lactate concentration (r = - 0.664). WHIIE produced greater muscle oxygenation during dynamic recovery. Muscle TSI% was inversely related to blood lactate concentration during exercise in water
    corecore