8,179 research outputs found

    State Transitions in Ultracompact Neutron Star LMXBs: towards the Low Luminosity Limit

    Full text link
    Luminosity of X-ray spectral state transitions in black hole and neutron star X-ray binaries can put constraint on the critical mass accretion rate between accretion regimes. Previous studies indicate that the hard-to-soft spectral state transitions in some ultracompact neutron star LMXBs have the lowest luminosity. With X-ray monitoring observations in the past decade, we were able to identify state transitions towards the lowest luminosity limit in 4U 0614+091, 2S 0918-549 and 4U 1246-588. By analysing corresponding X-ray pointed observations with the Swift/XRT and the RXTE/PCA, we found no hysteresis of state transitions in these sources, and determined the critical mass accretion rate in the range of 0.002 - 0.04 M˙Edd\dot{\rm M}_{\rm Edd} and 0.003 - 0.05 M˙Edd\dot{\rm M}_{\rm Edd} for the hard-to-soft and the soft-to-hard transition, respectively, by assuming a neutron star mass of 1.4 solar masses. This range is comparable to the lowest transition luminosity measured in black hole X-ray binaries, indicating the critical mass accretion rate is not affected by the nature of the surface of the compact stars. Our result does not support the Advection-Dominated Accretion Flow (ADAF) model which predicts that the critical mass accretion rate in neutron star systems is an order of magnitude lower if same viscosity parameters are taken. The low transition luminosity and insignificant hysteresis in these ultracompact X-ray binaries provide further evidence that the transition luminosity is likely related to the mass in the disc.Comment: 12 pages, 4 figures, to appear in MNRA

    Electron-electron scatttering in Sn-doped indium oxide thick films

    Full text link
    We have measured the low-field magnetoresistances (MRs) of a series of Sn-doped indium oxide thick films in the temperature TT range 4--35 K. The electron dephasing rate 1/τφ1/\tau_{\varphi} as a function of TT for each film was extracted by comparing the MR data with the three-dimensional (3D) weak-localization theoretical predictions. We found that the extracted 1/τφ1/\tau_{\varphi} varies linearly with T3/2T^{3/2}. Furthermore, at a given TT, 1/τφ1/\tau_{\varphi} varies linearly with kF−5/2l−3/2k_F^{-5/2}l^{-3/2}, where kFk_{F} is the Fermi wavenumber, and ll is the electron elastic mean free path. These features are well explained in terms of the small-energy-transfer electron-electron scattering time in 3D disordered conductors. This electron dephasing mechanism dominates over the electron-phonon (ee-ph) scattering process because the carrier concentrations in our films are ∼\sim 3 orders of magnitude lower than those in typical metals, which resulted in a greatly suppressed ee-ph relaxation rate.Comment: 5 pages, 3 figure

    Surface and Edge States in Topological Semi-metals

    Get PDF
    We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided into two parts in the energy spectrum, one part is in the direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence band. We also show how uni-axial strain induces an insulating band gap and raises the crossing point from the valence band into the band gap, making the system a true topological insulator. We predict existence of helical edge states and spin Hall effect in the thin film topological semi-metals, which could be tested with future experiment. Disorder is found to significantly enhance the spin Hall effect in the valence band of the thin films

    Mesh-based Autoencoders for Localized Deformation Component Analysis

    Full text link
    Spatially localized deformation components are very useful for shape analysis and synthesis in 3D geometry processing. Several methods have recently been developed, with an aim to extract intuitive and interpretable deformation components. However, these techniques suffer from fundamental limitations especially for meshes with noise or large-scale deformations, and may not always be able to identify important deformation components. In this paper we propose a novel mesh-based autoencoder architecture that is able to cope with meshes with irregular topology. We introduce sparse regularization in this framework, which along with convolutional operations, helps localize deformations. Our framework is capable of extracting localized deformation components from mesh data sets with large-scale deformations and is robust to noise. It also provides a nonlinear approach to reconstruction of meshes using the extracted basis, which is more effective than the current linear combination approach. Extensive experiments show that our method outperforms state-of-the-art methods in both qualitative and quantitative evaluations
    • …
    corecore