2 research outputs found

    Enhanced Air Stability of Polymer Solar Cells with a Nanofibril-Based Photoactive Layer

    No full text
    In spite of the rapid increase in the power conversion efficiency (PCE) of polymer solar cells (PSCs), the poor stability of the photoactive layer in air under sunlight is a critical problem blocking commercialization of PSCs. This study investigates the photo-oxidation behavior of a bulk-heterojunction (BHJ) photoactive film made of single-crystalline poly­(3-hexlythiophene) (P3HT) nanofibrils and fullerene derivatives [phenyl-C<sub>61</sub>-butyric methyl ester (PCBM), indene-C 60 bisadduct (ICBA)]. Because the single-crystalline P3HT nanofibrils had tightly packed π–π stacking, the permeation of oxygen and water into the nanofibrils was significantly reduced. Chemical changes in P3HT were not apparent in the nanofibrils, and hence the air stability of the nanofibril-based BHJ film was considerably enhanced as compared with conventional BHJ films. The chemical changes were monitored by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and UV–vis absorbance. Inverted PSCs made of the nanofibril-based BHJ layer also showed significantly enhanced air stability under sunlight. The nanofibril-based solar cell maintained more than 80% of its initial PCE after 30 days of continuous exposure to sunlight (AM 1.5G, 100 mW/cm<sup>2</sup>), whereas the PCE of the conventional BHJ solar cell decreased to 20% of its initial PCE under the same experimental conditions

    Highly Bendable Large-Area Printed Bulk Heterojunction Film Prepared by the Self-Seeded Growth of Poly(3-hexylthiophene) Nanofibrils

    No full text
    Applying conventional printing technologies to fabricate large-area flexible bulk heterojunction (BHJ) solar cells is of great interest. Achieving this task requires (i) large tolerance of the maximum photoconversion efficiency (PCE) to the film thickness, (ii) fast hole transport in both the thickness and lateral directions of the BHJ layer, and (iii) improved stability against bending and heat. This paper demonstrates that a P3HT:PCBM BHJ layer made of long P3HT nanofibrils of almost 100% crystallinity can be an excellent approach to achieve large-area printed solar cells. We applied a cool-and-heat (C&H) process with a P3HT/PCBM <i>m</i>-xylene solution to generate P3HT:PCBM nanofibril composite films. We found that the hole transport of the nanofibril composite was 2.6 times faster in the thickness direction and 6.5 times more conductive in the in-plane direction compared with conventionally annealed composites. The fast hole transport in the thickness direction led to negligible dependence of the PCE on the thickness of the composite layer. The improved conductivity in the in-plane direction prevented the sharp drop of the PCE as the active area increased. Taking advantage of the unique characteristics, we employed a roll-printing method to fabricate large-area unit solar cells in air. In addition, the curved contour path of the nanofibrils provided excellent stability against large bending strains, allowing the production of highly bendable organic solar cells
    corecore