19,622 research outputs found

    Learning to Predict the Cosmological Structure Formation

    Get PDF
    Matter evolved under influence of gravity from minuscule density fluctuations. Non-perturbative structure formed hierarchically over all scales, and developed non-Gaussian features in the Universe, known as the Cosmic Web. To fully understand the structure formation of the Universe is one of the holy grails of modern astrophysics. Astrophysicists survey large volumes of the Universe and employ a large ensemble of computer simulations to compare with the observed data in order to extract the full information of our own Universe. However, to evolve trillions of galaxies over billions of years even with the simplest physics is a daunting task. We build a deep neural network, the Deep Density Displacement Model (hereafter D3^3M), to predict the non-linear structure formation of the Universe from simple linear perturbation theory. Our extensive analysis, demonstrates that D3^3M outperforms the second order perturbation theory (hereafter 2LPT), the commonly used fast approximate simulation method, in point-wise comparison, 2-point correlation, and 3-point correlation. We also show that D3^3M is able to accurately extrapolate far beyond its training data, and predict structure formation for significantly different cosmological parameters. Our study proves, for the first time, that deep learning is a practical and accurate alternative to approximate simulations of the gravitational structure formation of the Universe.Comment: 8 pages, 5 figures, 1 tabl

    Detecting and quantifying natural selection at two linked loci from time series data of allele frequencies with forward-in-time simulations

    Get PDF
    Recent advances in DNA sequencing techniques have made it possible to monitor genomes in great detail over time. This improvement provides an opportunity for us to study natural selection based on time serial samples of genomes while accounting for genetic recombination effect and local linkage information. Such time series genomic data allow for more accurate estimation of population genetic parameters and hypothesis testing on the recent action of natural selection. In this work, we develop a novel Bayesian statistical framework for inferring natural selection at a pair of linked loci by capitalising on the temporal aspect of DNA data with the additional flexibility of modeling the sampled chromosomes that contain unknown alleles. Our approach is built on a hidden Markov model where the underlying process is a two-locus Wright-Fisher diffusion with selection, which enables us to explicitly model genetic recombination and local linkage. The posterior probability distribution for selection coefficients is computed by applying the particle marginal Metropolis-Hastings algorithm, which allows us to efficiently calculate the likelihood. We evaluate the performance of our Bayesian inference procedure through extensive simulations, showing that our approach can deliver accurate estimates of selection coefficients, and the addition of genetic recombination and local linkage brings about significant improvement in the inference of natural selection. We also illustrate the utility of our method on real data with an application to ancient DNA data associated with white spotting patterns in horses

    Demystify the mixed-parity pairing of attractive fermions with spin-orbit coupling in optical lattice

    Full text link
    The admixture of spin-singlet and spin-triplet pairing states in superconductors can be typically induced by breaking spatial inversion symmetry. Employing the {\it numerically exact} auxiliary-field Quantum Monte Carlo method, we study such mixed-parity pairing phenomena of attractive fermions with Rashba spin-orbit coupling (SOC) in two-dimensional optical lattice at finite temperature. We systematically demystify the evolution of the essential pairing structure in both singlet and triplet channels versus the temperature, fermion filling, SOC and interaction strengths, via computing the condensate fraction and pair wave function. Our numerical results reveal that the singlet channel dominates in the fermion pairing and the triplet pairing has relatively small contribution to the superfluidity for physically relevant parameters. In contrast to the singlet channel mainly consisted of the on-site Cooper pairs, the triplet pairing has plentiful patterns in real space with the largest contributions from several nearest neighbors. As the SOC strengh increases, the pairing correlation is firstly enhanced and then suppressed for triplet pairing while it's simply weakened in singlet channel. We have also obtained the Berezinskii-Kosterlitz-Thouless transition temperatures through the finite-size analysis of condensate fraction. Our results can serve as quantitative guide for future optical lattice experiments as well as accurate benchmarks for theories and other numerical methods.Comment: 14 pages, 11+5 figure
    • …
    corecore