5,240 research outputs found

    Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions

    Full text link
    Graphene-based vertical heterostructures, particularly stacks incorporated with other layered materials, are promising for nanoelectronics. The stacking of two model Dirac materials, graphene and topological insulator, can considerably enlarge the family of van der Waals heterostructures. Despite well understanding of the two individual materials, the electron transport properties of a combined vertical heterojunction are still unknown. Here we show the experimental realization of a vertical heterojunction between Bi2Se3 nanoplate and monolayer graphene. At low temperatures, the electron transport through the vertical heterojunction is dominated by the tunneling process, which can be effectively tuned by gate voltage to alter the density of states near the Fermi surface. In the presence of a magnetic field, quantum oscillations are observed due to the quantized Landau levels in both graphene and the two-dimensional surface states of Bi2Se3. Furthermore, we observe an exotic gate-tunable tunneling resistance under high magnetic field, which displays resistance maxima when the underlying graphene becomes a quantum Hall insulator

    Associations between Aquaglyceroporin Gene Polymorphisms and Risk of Stroke among Patients with Hypertension

    Get PDF
    Background: Dysregulations ofAQP7andAQP9were found to be related to lipid metabolism abnormality, which had been provento be one of the mechanisms of stroke. However, limited epidemiological studies explore the associations betweenAQP7andAQP9and the risk of stroke among patients with hypertension in China. Aims: We aimed to investigate the associations between genetic variants in AQP7andAQP9and the risk of stroke among patients with hypertension, as well as to explore gene-gene andgene-environment interactions. Methods: Baseline blood samples were drawn from 211 cases with stroke and 633 matched controls. Genomic DNA was extracted by a commercially available kit. Genotyping of 5 single nucleotide polymorphisms (SNPs) in AQP7 (rs2989924, rs3758269, and rs2542743) and AQP9 (rs57139208, rs16939881) was performed by the polymerase chain reaction assay with TaqMan probes. Results: Participants with the rs2989924 GG genotype were found to be with a 1.74-fold increased risk of stroke compared to those with the AA+AG genotype, and this association remained significant after adjustment for potential confounders (odds ratio (OR): 1.74, 95% confidence interval (CI): 1.23-2.46). The SNP rs3758269 CC+TT genotype was found to be with a 33% decreased risk of stroke after multivariate adjustment (OR: 0.67, 95% CI: 0.45-0.99) compared to the rs3758269 CC genotype. The significantly increased risk of stroke was prominent among males, patients aged 60 or above, and participants who were overweight and with a harbored genetic variant in SNP rs2989924. After adjusting potential confounders, the SNP rs3758269 CT+TT genotype was found to be significantly associated with a decreased risk of stroke compared to the CC genotype among participants younger than 60 years old or overweight. No statistically significant associations were observed between genotypes of rs2542743, rs57139208, or rs16939881 with the risk of stroke. Neither interactions nor linkage disequilibrium had been observed in this study. Conclusions: This study suggests that SNPs rs2989924 and rs3758269 are associated with the risk of stroke among patients with hypertension, while there were no statistically significant associations between rs2542743, rs57139208, and rs16939881 and the risk of stroke being observed

    Transliteration Extraction from Classical Chinese Buddhist Literature Using Conditional Random Fields

    Get PDF
    • …
    corecore