1,146 research outputs found

    Optimizing electric adjustment mechanism using the combination of multi-body dynamics and control

    Get PDF
    Abstract : Optimization was carried out on the electric adjustment mechanism for transplanter by using the multidisciplinary design with weight, transmission efficiency, vibration frequency, and control error as the optimization goals. Then, a collaborative optimization model for the multidisciplinary design of a mechanism system was constructed. Based on ISIGHT software, the multidisciplinary design integration platform for the electric adjustment mechanism was built. A hybrid algorithm comprising the dual sequential quadratic programming method and the multi-island genetic algorithm was used to calculate the model. Optimization results show that the weight of the electric adjustment mechanism drops by 13.10%, its vibration frequency decreases by 27.71%, its transmission efficiency increases by 20.26%, and the control error decreases by 36.98%. Under the mutual coordination and balance of all discipline goals, the optimal values of the design variables of the electric adjustment mechanism indicate overall optimal performance

    Autoimmunity-related demyelination in infection by Japanese encephalitis virus

    Get PDF
    Japanese encephalitis (JE) virus is the most common cause of epidemic viral encephalitis in the world. The virus mainly infects neuronal cells and causes an inflammatory response after invasion of the parenchyma of the brain. The death of neurons is frequently observed, in which demyelinated axons are commonly seen. The mechanism that accounts for the occurrence of demyelination is ambiguous thus far. With a mouse model, the present study showed that myelin-specific antibodies appeared in sera, particularly in those mice with evident symptoms. Meanwhile, specific T cells proliferating in response to stimulation by myelin basic protein (MBP) was also shown in these mice. Taken together, our results suggest that autoimmunity may play an important role in the destruction of components, e.g., MBP, of axon-surrounding myelin, resulting in demyelination in the mouse brain after infection with the JE virus

    THE EFFECT OF INSULIN AND CARBOHYDRATE SUPPLEMENTATION ON GLYCOGEN REPLENISHMENT AMONG DIFFERENT HINDLIMB MUSCLES IN RATS FOLLOWING PROLONGED SWIMMING

    Get PDF
    In the present study we investigated the interactive effects of insulin and carbohydrate on glycogen replenishment in different rat hindlimb muscles. Forty male Sprague Dawley rats were assigned to 5 groups, including 1) sedentary control with carbohydrate supplement (2 g glucose · kg body wt-1), 2) sedentary rats with 16 hours recovery, carbohydrate and insulin (0.5 U · kg body wt-1), 3) swimming without recovery, 4) swimming with 16 hours recovery and carbohydrate supplement, and 5) swimming with 16 hours recovery, carbohydrate and insulin. The swimming protocol consisted of two 3 h swimming sections, which were separated by a 45 min rest. The insulin and carbohydrate were administered to the rats immediately after exercise. At the end of the experiment, the soleus (S), plantaris (P), quadriceps (Q) and gastrocnemius (G) were surgically excised to evaluate glycogen utilization and replenishment. We observed that glycogen utilization was significantly lower in G and Q than S and P during swimming (p <0.05), and S showed the greatest capacity of glycogen resynthesis after post-exercise recovery (p <0.05). In the sedentary state, the glycogen synthesis did not differ among hindlimb muscles during insulin and carbohydrate treatments. Interestingly, with insulin and carbohydrate, the glycogen resynthesis in S and P were significantly greater than in Q and G following post-exercise recovery (p <0.05). We therefore concluded that the soleus and plantaris are the primary working muscles during swimming, and the greatest glycogen replenishment capacity of the soleus during post-exercise recovery is likely due to its highest insulin sensitivity
    corecore