3,329 research outputs found

    Evidence for a preformed Cooper pair model in the pseudogap spectra of a Ca10(Pt4As8)(Fe2As2)5 single crystal with a nodal superconducting gap

    Get PDF
    For high-Tc superconductors, clarifying the role and origin of the pseudogap is essential for understanding the pairing mechanism. Among the various models describing the pseudogap, the preformed Cooper pair model is a potential candidate. Therefore, we present experimental evidence for the preformed Cooper pair model by studying the pseudogap spectrum observed in the optical conductivity of a Ca10(Pt4As8)(Fe2As2)5 (Tc = 34.6 K) single crystal. We observed a clear pseudogap structure in the optical conductivity and observed its temperature dependence. In the superconducting (SC) state, one SC gap with a gap size of {\Delta} = 26 cm-1, a scattering rate of 1/{\tau} = 360 cm-1 and a low-frequency extra Drude component were observed. Spectral weight analysis revealed that the SC gap and pseudogap are formed from the same Drude band. This means that the pseudogap is a gap structure observed as a result of a continuous temperature evolution of the SC gap observed below Tc. This provides clear experimental evidence for the preformed Cooper pair model.Comment: 15 pages, 4 figure

    Graph Neural Network-Aided Exploratory Learning for Community Detection with Unknown Topology

    Full text link
    In social networks, the discovery of community structures has received considerable attention as a fundamental problem in various network analysis tasks. However, due to privacy concerns or access restrictions, the network structure is often unknown, thereby rendering established community detection approaches ineffective without costly network topology acquisition. To tackle this challenge, we present META-CODE, a novel end-to-end solution for detecting overlapping communities in networks with unknown topology via exploratory learning aided by easy-to-collect node metadata. Specifically, META-CODE consists of three iterative steps in addition to the initial network inference step: 1) node-level community-affiliation embeddings based on graph neural networks (GNNs) trained by our new reconstruction loss, 2) network exploration via community affiliation-based node queries, and 3) network inference using an edge connectivity-based Siamese neural network model from the explored network. Through comprehensive evaluations using five real-world datasets, we demonstrate that META-CODE exhibits (a) its superiority over benchmark community detection methods, (b) empirical evaluations as well as theoretical findings to see the effectiveness of our node query, (c) the influence of each module, and (d) its computational efficiency.Comment: 15 pages, 8 figures, 5 tables; its conference version was presented at the ACM International Conference on Information and Knowledge Management (CIKM 2022

    Null and time-like geodesics in Kerr-Newman black hole exterior

    Full text link
    We study the null and time-like geodesics of the light and the neutral particles respectively in the exterior of Kerr-Newman black holes. The geodesic equations are known to be written as a set of first-order differential equations in Mino time from which the angular and radial potentials can be defined. We classify the roots for both potentials, and mainly focus on those of the radial potential with an emphasis on the effect from the charge of the black holes. We then obtain the solutions of the trajectories in terms of the elliptical integrals and the Jacobian elliptic functions for both null and time-like geodesics, which are manifestly real functions of the Mino time that the initial conditions can be explicitly specified. We also describe the details of how to reduce those solutions into the cases of the spherical orbits. The effect of the black hole's charge decreases the radii of the spherical motion of the light and the particle for both direct and retrograde motions. In particular, we focus on the light/particle boomerang of the spherical orbits due to the frame dragging from the back hole's spin with the effect from the charge of the black hole. To sustain the change of the azimuthal angle of the light rays, say for example Δϕ=π\Delta \phi=\pi during the whole trip, the presence of the black hole's charge decreases the radius of the orbit and consequently reduces the needed values of the black hole's spin. As for the particle boomerang, the particle's inertia renders smaller change of the angle Δϕ\Delta \phi as compared with the light boomerang. Moreover, the black hole's charge also results in the smaller angle change Δϕ\Delta \phi of the particle than that in the Kerr case. The implications of the obtained results to observations are discussed.Comment: 50 pages, 18 figure

    Inspiral and Plunging Orbits in Kerr-Newman Spacetimes

    Full text link
    We present the analytical solutions for the trajectories that spiral and plunge inward the event horizon along the timelike geodesics of particles following general non-equatorial paths within Kerr-Newman spacetimes. Our studies encompass both bound and unbound motions. The solutions can be written in terms of the elliptical integrals and the Jacobian elliptic functions of manifestly real functions of the Mino time, and can respectively reduce to the Kerr, Reissner-Nordstro¨\ddot{o}m, and Schwarzschild black holes in certain limits of the spin and charge of the black holes. The results can be compared with some of the known ones restricted in the equatorial plane. These explicit solutions may find applications such as the black hole accretion.Comment: 28 pages, 9 figure

    Effects of text structures on interest and memory in expository texts

    Get PDF
    Abstract: The purpose of the study was to examine the effects of expository-text structures on interest and memory. Three methods of structuring texts used in the study were detailing, contextualizing, and questioning strategies. Students in grades 6 and 7 participated in the study. Two experiments were conducted. In the experiment 1, a within-subject design was used to investigate differences in text interests among different forms of texts. In the experiment 2, a between-subject design was used to investigate the effects of the textstructuring strategies on text comprehension and memory as well as text interest. Results of the experiment 1 showed that students selected contextualized texts as the most interesting. The reason was that students felt contextualized texts practically relevant to their real lives. In addition, texts constructed by using the strategies showed significantly higher levels of interest than the base text where no strategies were applied. However, in the experiment 2, no significant differences in text interest were found among the different forms of texts. In addition, scores on the text comprehension and memory tests were significantly higher in the base and questioning-strategy texts than in the other two forms of texts. Especially, the lowest performance was found in the contextualized texts. The results of the study provide practical implications on how to structure expository texts commonly used in school to enhance motivation and learning outcomes. Specifically, the results suggested that it would be the most desirable to construct text contents so as to create cognitive conflicts to readers, when text interest, comprehension, and memory are all considered

    Oldenlandia diffusa Promotes Antiproliferative and Apoptotic Effects in a Rat Hepatocellular Carcinoma with Liver Cirrhosis

    Get PDF
    Oldenlandia diffusa (OD) is commonly used with various diseases such as cancer, arthritis, and autoimmune disease. Liver cirrhosis is a predominant risk factor for hepatocellular carcinoma (HCC). Here, we show that the therapeutic effect of OD, which was investigated both in vitro and chemically, induced HCC model. OD significantly enhanced apoptosis and antiproliferative activity and reduced migration ability of HCC cells. In vivo, OD was treated twice a day for 28 days after confirmed HCC model through 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG) imaging. The survival in OD treated groups was shown to have a greater therapeutic effect than the control group. 28 days after OD treatment, OD treated groups resulted in a significant reduction in tumor number, size, (18)F-FDG uptake, and serum levels such as alanine transaminase, aspartate transaminase, and alkaline phosphate compared to the control group. Also, proliferated cells in tumor sites by OD were reduced compared to the control group. Furthermore, several rats in OD treated group survived over 60 days and liver morphology of these rats showed the difference between tumor mass and normal tissue. These results suggest that OD may have antiproliferative activity, inhibition of metastasis, and apoptotic effects in chemically induced HCC model and can have the potential use for clinical application as anticancer drug of the herbal extract

    Temperature dependence of the superconducting energy gaps in Ca9.35La0.65(Pt-3 As-8)(Fe2As2)(5) single crystal

    Get PDF
    We measured the optical reflectivity R(ω) for an underdoped (Ca0.935La0.065)10(Pt3As8)(Fe2As2)5 single crystal and obtained the optical conductivity σ1(ω) using the K-K transformation. The normal state σ1(ω) at 30 K is well fitted by a Drude-Lorentz model with two Drude components (ωp1 = 1446 cm-1 and ωp2 = 6322 cm-1) and seven Lorentz components. Relative reflectometry was used to accurately determine the temperature dependence of the superconducting gap at various temperatures below Tc. The results clearly show the opening of a superconducting gap with a weaker second gap structure; the magnitudes for the gaps are estimated from the generalized Mattis-Bardeen model to be Δ1 = 30 and Δ2 = 50 cm-1, respectively, at T = 8 K, which both decrease with increasing temperature. The temperature dependence of the gaps was not consistent with one-band BCS theory but was well described by a two-band (hence, two gap) BCS model with interband interactions. The temperature dependence of the superfluid density is flat at low temperatures, indicating an s-wave full-gap superconducting state. © The Author(s) 2018.1
    corecore