1,751 research outputs found

    Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity.</p> <p>Results</p> <p>We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues.</p> <p>Conclusion</p> <p>The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes.</p

    The Effect of Longitudinal Training on Working Memory Capacities: An Exploratory EEG Study

    Get PDF
    The study of working memory (WM) is a hot topic in recent years and accumulating literatures underlying the achievement and neural mechanism of WM. However, the effect of WM training on cognitive functions were rarely studied. In this study, nineteen healthy young subjects participated in a longitudinal design with one week N-back training (N=1,2,3,4). Experimental results demonstrated that training procedure could help the subjects master more complex psychological tasks when comparing the pre-training performance with those post-training. More specifically, the behavior accuracy increased from 68.14±9.34%, 45.09±14.90%, 39.12±12.71%, and 32.11±10.98% for 1-back, 2-back, 3-back and 4-back respectively to 73.52±4.01%, 69.14±5.28%, 69.09±6.41% and 64.41±5.12% after training. Furthermore, we applied elec-troencephalogram (EEG) power and functional connectivity to reveal the neural mechanisms of this beneficial effect and found that the EEG power of δ, θ and α band located in the left temporal and occipital lobe increased significantly. Meanwhile, the functional connectivity strength also increased obviously in δ and θ band. In sum, we showed positive effect of WM training on psychological performance and explored the neural mechanisms. Our findings may have the implications for enhancing the performance of participants who are prone to cognitive

    Positive loop-closed automata: a decidable class of hybrid systems

    Get PDF
    AbstractThe model-checking problem for real-time and hybrid systems is very difficult, even for a well-formed class of hybrid systems—the class of linear hybrid automata—the problem is still undecidable in general. So an important question for the analysis and design of real-time and hybrid systems is the identification of subclasses of such systems and corresponding restricted classes of analysis problems that can be settled algorithmically. In this paper, we show that for a class of linear hybrid automata called positive loop-closed automata, the satisfaction problem for linear duration properties can be solved by linear programming. We extend the traditional regular expressions with duration constraints and use them as a language to describe the behaviour of this class of linear hybrid automata. The extended notation is called duration-constrained regular expressions. Based on this formalism, we show that the model-checking problem can be reduced formally to linear programs

    Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Get PDF
    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.

    Starch gelatinization under shearless and shear conditions

    Get PDF
    This article reviews the development of studying starch gelatinization under shear and shearless conditions, in particular the technologies used to detect the degree of gelatinization. Advantages and disadvantages of each technology were discussed and then some examples were presented to demonstrate their application. A new technology RheoScope, an instrument that can measure viscosity under shear stress and simultaneously observes variation of starch particles using a microscope, was also introduced. It was found the definition of "gelatinization" could be different for different detection technologies. Under shearless condition full gelatinization of starch needs about ratio of water 3/starch 1, while the gelatinization under shear condition requires less water content since shear stress enhances the processing. The number of endotherm and enthalpy of gelatinization depends on amylose/amylopectin, moisture and lipid content

    Feature Decoupling-Recycling Network for Fast Interactive Segmentation

    Full text link
    Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input without considering the invariant nature of the source image. As a result, extracting features from the source image is repeated in each interaction, resulting in substantial computational redundancy. In this work, we propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies and then recycles components for each user interaction. Thus, the efficiency of the whole interactive process can be significantly improved. To be specific, we apply the Decoupling-Recycling strategy from three perspectives to address three types of discrepancies, respectively. First, our model decouples the learning of source image semantics from the encoding of user guidance to process two types of input domains separately. Second, FDRN decouples high-level and low-level features from stratified semantic representations to enhance feature learning. Third, during the encoding of user guidance, current user guidance is decoupled from historical guidance to highlight the effect of current user guidance. We conduct extensive experiments on 6 datasets from different domains and modalities, which demonstrate the following merits of our model: 1) superior efficiency than other methods, particularly advantageous in challenging scenarios requiring long-term interactions (up to 4.25x faster), while achieving favorable segmentation performance; 2) strong applicability to various methods serving as a universal enhancement technique; 3) well cross-task generalizability, e.g., to medical image segmentation, and robustness against misleading user guidance.Comment: Accepted to ACM MM 202

    Temporal change in multimorbidity prevalence, clustering patterns, and the association with mortality: findings from the China Kadoorie Biobank study in Jiangsu Province

    Get PDF
    Objectives: The characteristics of multimorbidity in the Chinese population are currently unclear. We aimed to determine the temporal change in multimorbidity prevalence, clustering patterns, and the association of multimorbidity with mortality from all causes and four major chronic diseases. Methods: This study analyzed data from the China Kadoorie Biobank study performed in Wuzhong District, Jiangsu Province. A total of 53,269 participants aged 30–79 years were recruited between 2004 and 2008. New diagnoses of 15 chronic diseases and death events were collected during the mean follow-up of 10.9 years. Yule's Q cluster analysis method was used to determine the clustering patterns of multimorbidity. A Cox proportional hazards model was used to estimate the associations of multimorbidity with mortalities. Results: The overall multimorbidity prevalence rate was 21.1% at baseline and 27.7% at the end of follow-up. Multimorbidity increased more rapidly during the follow-up in individuals who had a higher risk at baseline. Three main multimorbidity patterns were identified: (i) cardiometabolic multimorbidity (diabetes, coronary heart disease, stroke, and hypertension), (ii) respiratory multimorbidity (tuberculosis, asthma, and chronic obstructive pulmonary disease), and (iii) mental, kidney and arthritis multimorbidity (neurasthenia, psychiatric disorders, chronic kidney disease, and rheumatoid arthritis). There were 3,433 deaths during the follow-up. The mortality risk increased by 24% with each additional disease [hazard ratio (HR) = 1.24, 95% confidence interval (CI) = 1.20–1.29]. Compared with those without multimorbidity at baseline, both cardiometabolic multimorbidity and respiratory multimorbidity were associated with increased mortality from all causes and four major chronic diseases. Cardiometabolic multimorbidity was additionally associated with mortality from cardiovascular diseases and diabetes, with HRs of 2.64 (95% CI = 2.19–3.19) and 28.19 (95% CI = 14.85–53.51), respectively. Respiratory multimorbidity was associated with respiratory disease mortality, with an HR of 9.76 (95% CI = 6.22–15.31). Conclusion: The prevalence of multimorbidity has increased substantially over the past decade. This study has revealed that cardiometabolic multimorbidity and respiratory multimorbidity have significantly increased mortality rates. These findings indicate the need to consider high-risk populations and to provide local evidence for intervention strategies and health management in economically developed regions

    Erythropoietin improves skeletal muscle microcirculation and tissue bioenergetics in a mouse sepsis model

    Get PDF
    Introduction: The relationship between oxygen delivery and consumption in sepsis is impaired, suggesting a microcirculatory perfusion defect. Recombinant human erythropoietin (rHuEPO) regulates erythropoiesis and also exerts complex actions promoting the maintenance of homeostasis of the organism under stress. The objective of this study was to test the hypothesis that rHuEPO could improve skeletal muscle capillary perfusion and tissue oxygenation in sepsis. Methods: Septic mice in three experiments received rHu-EPO 400 U/kg subcutaneously 18 hours after cecal ligation and perforation (CLP). The first experiment measured the acute effects of rHuEPO on hemodynamics, blood counts, and arterial lactate level. The next two sets of experiments used intravital microscopy to observe capillary perfusion and nicotinamide adenine dinucleotide (NADH) fluorescence post-CLP after treatment with rHuEPO every 10 minutes for 40 minutes and at 6 hours. Perfused capillary density during a three-minute observation period and NADH fluorescence were measured. Results: rHuEPO did not have any effects on blood pressure, lactate level, or blood cell numbers. CLP mice demonstrated a 22% decrease in perfused capillary density compared to the sham group (28.5 versus 36.6 capillaries per millimeter; p \u3c 0.001). Treatment of CLP mice with rHuEPO resulted in an immediate and significant increase in perfused capillaries in the CLP group at all time points compared to baseline from 28.5 to 33.6 capillaries per millimeter at 40 minutes; p \u3c 0.001. A significant increase in baseline NADH, suggesting tissue hypoxia, was noted in the CLP mice compared to the sham group (48.3 versus 43.9 fluorescence units [FU]; p = 0.03) and improved with rHuEPO from 48.3 to 44.4 FU at 40 minutes (p = 0.02). Six hours after treatment with rHuEPO, CLP mice demonstrated a higher mean perfused capillary density (39.4 versus 31.7 capillaries per millimeter; p \u3c 0.001) and a lower mean NADH fluorescence as compared to CLP+normal saline mice (49.4 versus 52.7 FU; p = 0.03). Conclusion: rHuEPO produced an immediate increase in capillary perfusion and decrease in NADH fluorescence in skeletal muscle. Thus, it appears that rHuEPO improves tissue bioenergetics, which is sustained for at least six hours in this murine sepsis model
    corecore