
The Journal of Logic and
Algebraic Programming 52–53 (2002) 79–108

��� �����	
��

��
� 	��
	
����	
�
�����	��
��

www.elsevier.com/locate/jlap

Positive loop-closed automata: a decidable class of
hybrid systems

Xuandong Li ∗, Jianhua Zhao, Yu Pei, Yong Li, Tao Zheng,
Guoliang Zheng

Department of Computer Science and Technology, State Key Laboratory of Novel Software Technology, Nanjing
University, Jiangsu, Nanjing 210093, People’s Republic of China

Abstract

The model-checking problem for real-time and hybrid systems is very difficult, even for a well-
formed class of hybrid systems—the class of linear hybrid automata—the problem is still unde-
cidable in general. So an important question for the analysis and design of real-time and hybrid
systems is the identification of subclasses of such systems and corresponding restricted classes of
analysis problems that can be settled algorithmically. In this paper, we show that for a class of linear
hybrid automata called positive loop-closed automata, the satisfaction problem for linear duration
properties can be solved by linear programming. We extend the traditional regular expressions with
duration constraints and use them as a language to describe the behaviour of this class of linear hybrid
automata. The extended notation is called duration-constrained regular expressions. Based on this
formalism, we show that the model-checking problem can be reduced formally to linear programs.
© 2002 Elsevier Science Inc. All rights reserved.

Keywords: Real-time and hybrid systems; Model checking; Hybrid automata; Linear duration prop-
erties

1. Introduction

Hybrid systems are real-time systems that allow continuous state changes, over time
periods of positive duration, as well as discrete state changes, in zero time. The formalism
of hybrid automata [2] has become a standard model for real-time and hybrid systems.

A class of hybrid systems can be modelled by linear hybrid automata. Informally,
a linear hybrid automaton is a conventional automaton extended with a set of variables,
which are used to model the continuous state changes of hybrid systems and are assumed
to be piecewise-linear functions of time. The states of the automaton called locations are

∗ Corresponding author.
E-mail addresses: lxd@nju.edu.cn (X. Li), zhaojh@nju.edu.cn (J. Zhao), peiyu@seg.nju.edu.cn (Y. Pei),

liyong@seg.nju.edu.cn (Y. Li), zt@nju.edu.cn (T. Zheng), zhenggl@nju.edu.cn (G. Zheng).

1567-8326/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.
PII: S1567 -8326(02)00024-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82366837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

80 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

Fig. 1. A hybrid automaton modelling a water-level monitor.

assigned with a system state and with a change rate for each variable, such as ẋ = w

(x is a variable, w is a real number), and the transitions of the automaton are labeled
with constraints on the variables such as a � x � b and /or with reset actions such as
x := c (x is a variable, a, b, and c are real numbers). The automaton starts at one of the
initial locations with all variables initialised to their initial values. As time progresses, the
values of all variables change continuously according to the rate associated with the current
location. At any time, the system can change its current location from v to v′ provided that
there is a transition e from v to v′ whose labeling conditions are satisfied by the current
value of the variables. With a location change by a transition e, all the variables are reset
to the new value accordingly by the reset actions labeled on e. Transitions are assumed to
be instantaneous.

Let us consider an example of a water-level monitor in [3]. The water level in a tank
is controlled through a monitor, which continuously senses the water level and turns a
pump on and off. The water level changes as a piecewise-linear function of time. When the
pump is off, the water level falls by 2 in. per second; when the pump is on, the water level
rises by 1 in. per second. Suppose that initially the water level is one inch and the pump
is on. There is a delay of two seconds from the time that the monitor signals to change
the status of the pump to the time that the change becomes effective. The requirement of
the water-level monitor is that the monitor must keep the water level in between 1 and
12 in. A design of the monitor is modelled by the hybrid automaton depicted in Fig. 1.
The automaton has four locations v1, v2, v3, v4 which are assigned with the system states
s1, s2, s3, s4 respectively. In the locations v1 and v2, the pump is on; in the locations v3 and
v4, the pump is off. The variable y is used to model the water-level, and x is used to specify
the delays: whenever the control is in location v2 or v3, the value of x indicates how long
the signal to switch the pump off or on has been sent.

The model-checking problem for real-time and hybrid systems is very difficult, even for
a well-formed class of hybrid systems—the class of linear hybrid automata—the problem
is still undecidable in general [2,5,6]. So an important question for the analysis and design
of real-time and hybrid systems is identification of subclasses of such systems and corre-
sponding restricted classes of analysis problems that can be settled algorithmically [5]. In
recent years there have been some works on searching for decidable analysis problems for a
subclass of linear hybrid automata [3,5–7,11–13]. In this paper, for linear duration proper-
ties we give a new decidable subclass of linear hybrid automata called positive loop-closed
automata. Based on linear programming, we solve the satisfaction problem of positive
loop-closed automata for linear duration properties.

Linear duration properties are linear inequalities on integrated durations of system
states. Here we use duration calculus (DC) [1] to describe this kind of properties. DC

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 81

is a logic to specify and reason about requirements for real-time systems. It is an extension
of Interval temporal logic which can be used to reason about integrated constraints over
time-dependent and Boolean value states without explicit mention of absolute time. In
DC, states are modelled as Boolean functions from reals (representing continuous time)
to {0, 1}, where 1 denotes state presence, and 0 denotes state absence. For a state S, the
integral variable

∫
S of DC is a function from bounded and closed intervals to reals which

stands for the accumulated presence time (duration) of state S over the intervals, and is
defined formally by

∫
S[a, b] =̂ ∫ b

a
S(t) dt , where [a, b](b � a) is a bounded interval of

time. A linear duration property in DC is of the form

m∑
i=1

ci

∫
Si � M,

where Sis are system states, and M and cis are real numbers. For example, the requirement
of the water-level monitor, which is that the monitor must keep the water level in between
1 and 12 in., can be expressed by linear duration properties as well. We know that when the
control is in locations v1 or v2, the water level rises 1 in. per second, and when the control
is in locations v3 or v4, the water level falls by 2 in. per second. Furthermore, for an interval
[0, t], the accumulated time that the system stays in s1 or s2 is

∫
s1 + ∫

s2, and the accumu-
lated time that the system stays in s3 or s4 is

∫
s3 + ∫

s4. Therefore, the water level at time
t , given that at the beginning the water level is 1 in., is 1 + ∫

s1 + ∫
s2 − 2(

∫
s3 + ∫

s4).
Hence, the requirement for the water-level monitor can be described by the following linear
duration properties:

1 +
∫

s1 +
∫

s2 − 2

(∫
s3 +

∫
s4

)
� 12,

1 +
∫

s1 +
∫

s2 − 2

(∫
s3 +

∫
s4

)
� 1.

In this paper, we consider the problem of checking linear hybrid automata for linear
duration properties. We extend the traditional regular expressions with duration constraints
and use them as a language to describe the behaviour of linear hybrid automata. The
extended notation is called duration-constrained regular expressions. Based on this for-
malism, we show that the model-checking problem can be reduced formally to linear
programs for positive loop-closed automata. The paper is organised as follows. In Section
2, we recall the notion of linear hybrid automata. Section 3 defines positive loop-closed
automata. Section 4 introduces duration-constrained regular expressions to describe the
behaviour of linear hybrid automata. Section 5 shows that based on duration-constrained
regular expressions, the model-checking problem for positive loop-closed automata can
be reduced formally to linear programs. Section 6 discusses the related work and contains
some conclusions.

2. Linear hybrid automata

A linear hybrid automaton is a conventional automaton extended with a finite set of
real-valued variables. We use a simplified version of linear hybrid automata defined in [2].
The simplification is that any linear hybrid automaton considered in this paper has just one

82 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

initial location, no initial condition, and no transition to the initial location (we suppose
that each variable with an initial value is reset to the initial value by the transitions from
the initial location).

Definition 1. A linear hybrid automaton is a tuple H = (Z,X, V,E, vI , α, β), where
• Z is a finite set of system states.
• X is a finite set of real-numbered variables.
• V is a finite set of locations.
• E is transition relation whose elements are of the form (v, φ, ψ, v′) where v, v′ are

in V , φ is a set of variable constraints of the form a � x � b, and ψ is a set of reset
actions of the form y := c (x ∈ X, y ∈ X, a, b, c are real numbers, a and b may be
∞; if a (b) is −∞ (∞), then a � x � b is taken to be x � b (a � x); if a = b, then
a � x � b is taken to be x = a).

• vI is an initial location.
• α is a labeling function which maps each location in V to a state in Z.
• β is a labeling function which maps each location in V to a set of change rates which

are of the form
.
x= a (x ∈ X and a is a real number). For any location v, for any x ∈ X,

there is one and only one
.
x= a ∈ β(v).

We use sequences of locations to represent the evolution of a linear hybrid automaton
from state to state. A sequence of locations is of the form

v0
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ · · · (φm,ψm)−→ vm+1,

which indicates that the automaton start from location v0, move to vi+1 from vi with ex-
ecuting the reset actions in set ψi when the variable constraints in set φi are satisfied. For
a linear hybrid automaton H = (Z,X, V,E, vI , α, β), a path segment is a sequence of

locations v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→ vm which satisfies (vi, φi, ψi, vi+1) ∈ E for
each i (1 � i � m − 1). A path in H is a path segment starting at vI . A path (path segment)
is called simple path (path segment) if all locations in the path (path segment) are distinct. A

simple path (path segment) of the form v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→ vm is bounded
if it cannot be extended into a longer simple path (path segment), i.e. there is no loca-

tion v in H such that v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→ vm
(φ,ψ)−→ v is a simple path (path

segment).
The behaviour of linear hybrid automata can be represented by timed sequences. Any

timed sequence is of the form (s1, t1)
∧(s2, t2)

∧ · · · ∧(sm, tm), where si (1 � i � m) is a
state and ti (1 � i � m) is a nonnegative real number, which represents a behaviour of an
automaton that the system starts at the state s1, stays there for t1 time units, then changes
to s2 and stays in s2 for t2 time units, and so on.

Definition 2. For a linear hybrid automaton H = (Z,X, V,E, vI , α, β), a timed sequence
(s1, t1)

∧(s2, t2)
∧ · · · ∧(sm, tm) (m � 1) represents a behaviour of H if there is a path of the

automaton

v0
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ · · · (φm,ψm)−→ vm+1

satisfying that
• for each i (1 � i � m), α(vi) = si ; and

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 83

• t1, t2, . . . , tm satisfy all the variable constraints in φi (1 � i � m), i.e. for each variable
constraint a � x � b in φi , if there is a reset action x := c in ψj (0 � j < i) and x := d

is not in ψk for any k (j < k < i), then

a � c + wj+1tj+1 + wj+2tj+2 + · · · + witi � b,

where for each l (j < l � i),
.
x= wl ∈ β(vl).

For example, for the linear hybrid automaton depicted in Fig. 1, the timed sequence
(s1, 9)∧(s2, 2)∧(s3, 3.5)∧(s4, 2) is a behaviour.

For a linear hybrid automaton H , for a transition e = (v, φ, ψ, v′) in H , if e is labeled
with a variable constraint a � x � b, i.e. a � x � b ∈ φ, then we say that x is tested by e;
if e is labeled with a reset action x := c, i.e. x := c ∈ ψ , then we say that x is reset by e.
Notice that if a transition is labeled with a variable constraint x = c, we can take it as the
transition resets the variable x to c. For example, for the automaton depicted in Fig. 1, we
can say that the transitions e1 and e3 reset the variable y to 10 and 5 respectively, and the
transitions e2 and e4 reset the variable x to 2.

3. Positive loop-closed automata

Positive loop-closed automata form a subclass of linear hybrid automata. In the follow-
ing, we define this class of linear hybrid automata, and give an algorithm for identifying
them.

3.1. Definition of positive loop-closed automata

A positive loop-closed automaton is a restricted linear hybrid automaton with its loops
satisfying two restriction conditions. So we first define loops in linear hybrid automata. For

a simple path in a linear hybrid automaton of the form v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→
vm, if there is vi (1 < i � m) such that (vm, φ,ψ, vi) ∈ E, then the
sequence

vi
(φi ,ψi)−→ vi+1

(φi+1,ψi+1)−→ · · · (φm−1,ψm−1)−→ vm
(φ,ψ)−→ vi

is a loop, vi is the loop-start node of the loop, v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φi−1,ψi−1)−→ vi is a
loop-enter path of the loop, and (vm, φ,ψ, vi) is the end transition in the loop. Notice that
a loop may have many different loop-enter paths. For a loop ρ, if ρ1 is a loop-enter path
of ρ, we say that ρ can be entered through ρ1. For example, in the automaton depicted in
Fig. 2, the sequence of locations

v2
(∅,{y:=0})−→ v3

({x�5},∅)−→ v4
({y�3},{x:=0})−→ v2

is a loop, and the sequence of locations

v0
(∅,{x:=−3,y:=1,z:=0})−→ v1

({z�−5},{x:=0})−→ v2

is a loop-enter of the loop; and the sequence of locations

v5
(∅,{x:=0})−→ v6

({1�y�5},∅)−→ v7
({−1�x�2},{y:=1})−→ v5

84 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

Fig. 2. A loop-closed automaton.

is a loop, and the sequence of locations

v0
(∅,{x:=−3,y:=1,z:=0})−→ v1

({z�−5},{x:=0})−→ v2
(∅,{y:=1,z:=2})−→ v5

is a loop-enter of the loop.
Then we introduce loop-closedness which is one condition satisfied by any loop in a

positive loop-closed automaton. Intuitively, loop-closedness means that any variable con-
straint inside (outside) a loop is not related to any transition outside (inside) the loop, which
is defined formally as follows. In a linear hybrid automaton H , let ρ be a loop of the form

v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→ vm, and ρ1 be a path of the form

u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ · · · (φ′

i−1,ψ
′
i−1)−→ ui

(φ′
i ,ψ

′
i)−→ · · · (φ′

m−1,ψ
′
m−1)−→ um.

Suppose that v1 = ui , i.e. the loop ρ starts from ui . It follows that by replacing ui in ρ1
with ρ we can get another path ρ2 of the form

u1
(φ′

1,ψ
′
1)−→ · · · (φ′

i−2,ψ
′
i−2)−→ ui−1

(φ′
i−1,ψ

′
i−1)−→ ρ

(φ′
i ,ψ

′
i)−→ ui+1

(φ′
i+1,ψ

′
i+1)−→ · · · (φ′

m−1,ψ
′
m−1)−→ um.

We say that in the path ρ2, a variable constraint inside ρ is related to a transition outside ρ

if the following condition holds:
• there is a variable constraint a � x � b which is labeled on a transition (vj , φj , ψj ,

vj+1) (1 � j < m) in ρ,
• any transition (vk, φk, ψk, vk+1) (1 � k < j) in ρ does not reset the variable x, and
• there is a transition (ul, φ

′
l , ψ

′
l , ul+1) (1 � l < i − 1) in ρ2 resetting the variable x, but

any transition (uk, φ
′
k, ψ

′
k, uk+1) (l < k < i) in ρ2 does not reset the variable x,

which means that when the automaton stays in vj along the path ρ2, in order to check if the
variable constraint a � x � b is satisfied, we need to refer the value of x which is reset to
by the transition (ul, φ

′
l , ψ

′
l , ul+1). We say that in the path ρ2, a variable constraint outside

ρ is related to a transition inside ρ if the following condition holds:
• there is a variable constraint a � x � b which is labeled on a transition (uj , φ

′
j , ψ

′
j ,

uj+1) (i � j < n) in ρ2,
• any transition (uk, φ

′
k, ψ

′
k, uk+1) (i � k < j) in ρ2 does not reset the variable x, and

• there is a transition (vl, φl, ψl, vl+1) (1 � l < m − 1) in ρ resetting the variable x, but
the end transition (vm−1, φm−i , ψm−1, vm) of ρ does not reset x,

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 85

which means that when the automaton stays in uj along the path ρ2, in order to check if
the variable constraint a � x � b is satisfied, we need to refer the value of x which is reset
to by the transition (vl, φl, ψl, vl+1).

Let ρ be a loop in a linear hybrid automaton H of the form

v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→ vm.

We defined that ρ is closed if for any path in H containing ρ, any variable constraint inside
ρ is not related to any transition outside ρ, and any variable constraint outside ρ is not
related to any transition inside ρ, i.e. the following condition holds:
• any variable constraint inside ρ is not related to any transition outside ρ, i.e., for any

simple path or loop

u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ · · · (φ′

n−1,ψ
′
n−1)−→ un (n > 1)

satisfying that v1 = un,
• for any variable constraint a � x � b labeled on a transition (vi, φi, ψi, vi+1) (1 �

i � m) in ρ, if there is no transition (vj , φj , ψj , vj+1) (1 � j < i) in ρ resetting x,
then x is reset to c by the end transition (vm−1, φm−1, ψm−1, vm) of ρ and by the
transition (un−1, φ

′
n−1, ψ

′
n−1, un), i.e. x := c ∈ ψm−1 and x := c ∈ ψ ′

n−1; and
• for any variable y reset to d by the end transition (vm−1, φm−1, ψm−1, vm) of ρ, y is

reset to d by the transition (un−1, φ
′
n−1, ψ

′
n−1, un), i.e.

y :=d ∈ ψm−1 ⇒ y :=d ∈ ψ ′
n−1;

• any variable constraint outside ρ is not related to any transition inside ρ, i.e., for any
simple path segment

u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ · · · (φ′

n−1,ψ
′
n−1)−→ un

satisfying that v1 = u1, there is no variable constraint a � x � b labeled on the transi-
tion (un−1, φ

′
n−1, ψ

′
n−1, un) satisfying that

• x is reset by a transition (vi, φi, ψi, vi+1) (1 � i < m − 1) in ρ, and
• x is not reset by the end transition (vm−1, φm−1, ψm−1, vm) of ρ and by any transition

(uk, φ
′
k, ψ

′
k, uk+1) (1 � k < n − 1).

For example, in the automaton depicted in Fig. 2, the loop

v2
(∅,{y := 0})−→ v3

({x�5},∅)−→ v4
({y�3},{x := 0})−→ v2

is a closed loop. But it is not closed if we remove the reset action y :=0 from the transition
e2 since now for the path

v0
(∅,{x :=−3,y := 1,z := 0})−→ v1

({z�−5},{x := 0})−→
v2

(∅,{y := 0})−→ v3
({x�5},∅)−→ v4

({y�3},{x := 0})−→ v2,

the variable constraint y � 3 labeled on e4 is related to the transition e0 which is outside
the loop. That a loop is closed implies that the variable values inside the loop do not depend
on their values outside the loop, and that the variable values outside the loop do not depend
on their values inside the loop.

86 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

Fig. 3. A loop-closed automaton which has the same behaviour as the automaton in Fig. 1.

Definition 3. A linear hybrid automaton H is loop-closed if each loop in H is closed.

For example, the automaton depicted in Fig. 2 is a loop-closed automaton. We have
discovered that for some loops which are not closed, if we change their loop-start nodes
then they become closed. For example, the only loop in the automaton depicted in Fig. 1
is not closed, but if the location v2 is the loop-start node instead of the location v1 then
the loop is closed. So we introduce a new location v′

1 such that the location v2 becomes
the loop-start node, and get a loop-closed automaton with the same behaviour which is
depicted in Fig. 3.

The other restriction condition satisfied by any loop in a positive loop-closed automaton
is reducibleness. It follows that if any loop in a loop-closed automaton satisfies the reduc-
ibleness condition then the automaton is a positive loop-closed automaton. For defining
the reducibleness condition, we first need to introduce zero loops and nonzero loops.

For a loop-closed automaton H , let ρ be a loop in H which is of the form v1
(φ1,ψ1)−→

v2
(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→ vm. We say that ρ is a zero loop if for any variable constraint a �

x � b in φi (1 � i < m), a − d � 0 and b − d � 0 where d satisfies one of the following
two conditions:
• x is reset to d by a transition (vj , φj , ψj , vj+1) (1 � j < i), but not reset by any tran-

sition (vk, φk, ψk, vk+1) (j < k < i); or
• x is reset to d by the end transition (vm−1, φm−1, ψm−1, vm), but not reset by any tran-

sition (vk, φk, ψk, vk+1) (1 � k < i).
A loop is called nonzero loop if it is not a zero loop. According to the variable constraints

on the transitions of a loop, if a loop is a zero loop, then a repetition of the loop may take no
time; if a loop is a nonzero loop, then a repetition of the loop must take time. For example,
in the automaton depicted in Fig. 2,

v5
(∅,{x := 0})−→ v6

({1�y�5},∅)−→ v7
({−1�x�2},{y := 1})−→ v5

and

v1
({z�−5},{x := 0})−→ v2

(∅,{z := 2,y := 1})−→ v5
({z�20},∅)−→ v8

(∅,{z := 0})−→ v1

are zero loops, while

v2
(∅,{y := 0})−→ v3

({x�5},∅)−→ v4
({y�3},{x := 0})−→ v2

is a nonzero loop.

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 87

Then we define the reducibleness condition. For a loop-closed automaton H , a variable
x is positive if

.
x> 0 for any location; a variable constraint a � x � b is called positive

constraint if x is positive and b �= ∞. Let ρ be a loop in H which is of the form

v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ · · · (φm−1,ψm−1)−→ vm.

We say that ρ is reducible if for any bounded simple path segment

u1
(φ′

1,ψ
′
1)−→ u2

(φ′
2,ψ

′
2)−→ · · · (φ′

n−1,ψ
′
n−1)−→ un

satisfying that v1 = u1,
• either ρ is not constrained by any variable constraint in the path segment, i.e. for any

variable constraint a � x � b labeled on a transition (ui, ψ
′
i , φ

′
i , ui+1) (1 � i < n), x

is reset by a transition (uj , φ
′
j , ψ

′
j , uj+1) (1 � j < i) or by the end transition (vm−1,

φm−1, ψm−1, vm) of ρ; or
• ρ is constrained by a positive constraint in the path segment, i.e. there is a positive con-

straint a � x � b labeled on a transition (ui, ψ
′
i , φ

′
i , ui+1) (1 � i < n) satisfying that

x is not reset by any transition (uj , φ
′
j , ψ

′
j , uj+1) (1 � j < i) and by the end transition

(vm−1, φm−1, ψm−1, vm) of ρ.

For example, in the automaton depicted in Fig. 2, the nonzero loop

v2
(∅,{y := 0})−→ v3

({x�5},∅)−→ v4
({y�3},{x := 0})−→ v2

is reducible, but the zero loop

v5
(∅,{x := 0})−→ v6

({1�y�5},∅)−→ v7
({−1�x�2},{y := 1})−→ v5

is not reducible since along the path segment

v5
({z�20},∅)−→ v8

(∅,{z := 0})−→ v1
({z�−5}�,{x := 0})−→ v2,

it is constrained only by the variable constraint z � 20 on the transition e9 which is not
positive. For a nonzero loop, if it is constrained by a positive constraint in a path segment,
then the positive constraint will be violated by unfolding the loop finite many times since
every repetition of the nonzero loop must take time. So that a nonzero loop is reducible
means that either it is not constrained by any variable constraint (in this case, we just need
to unfold it one time for checking a given linear duration property), or it is constrained by
a positive constraint so that any path of the automaton satisfying enforced time constraints
only contains finite many times repetition of the loop (in this case, the model checking
problem is decidable).

Definition 4. A positive loop-closed automaton is a loop-closed automaton in which each
nonzero loop is reducible.

For example, the automata depicted in Figs. 2 and 3 are positive loop-closed automata.
Although the definition of positive loop-closed automaton is not simple, we can give an
efficient algorithm to check if a linear hybrid automaton is positive loop-closed, which is
described in Appendix A.

Positive loop-closed automata form a decidable class of linear hybrid automata for lin-
ear duration properties. For real systems, the condition of positive loop-closedness is ra-
tional. For a real system (e.g., a control system), the loop-closedness means that every

88 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

repetition of a control process starts from the same control conditions. Furthermore, for
a control system, in most case, a repetition of a control process takes time, and a task
containing the repetitions of the control process need to be finished in a given time (as a
nonzero loop is constrained by a positive constraint). So we think that there are a number
of real systems that satisfy the condition of positive loop-closedness and that can thus be
modeled by positive loop-closed automata. In next section, we will introduce duration-
constrained regular expressions to represent the behaviour of this class of linear hybrid
automata. Based on this formalism, in Section 5 we show that the satisfaction problem
of positive loop-closed automata for linear duration properties can be solved by linear
programming.

4. Duration-constrained regular expressions

We know that the number of timed sequences to express the behaviour of a linear hy-
brid automaton may be infinite. In this section, we introduce duration-constrained regular
expressions as a finite representation of behaviour of loop-closed automata, which is an
extension of regular expressions with duration constraints.

4.1. Definition of duration-constrained regular expressions

While a regular expression over a set of states/transitions (alphabet) is a finite represen-
tation of a (infinite) set of sequences of states/transitions, a duration-constrained regular
expression will be a finite representation of a set of timed sequences of states. By incorpo-
rating duration constraints into regular expressions, we get duration-constrained regular
expressions.

A duration constraint in Duration Calculus is of the form a �
∑m

i=1 ci
∫
Si � b, where

Sis are states, and a, b, and cis are real numbers (a and b may be ∞). We use S1, S2, . . . , Sn
to range over the states occurring in duration constraints and linear duration properties,
and s1, s2, . . . , sm to range over the states occurring in timed sequences. Let σ = (s1, t1)

∧
(s2, t2)

∧ · · · ∧(sm, tm) be a timed sequence. For a duration constraint a �
∑n

i=1 ci
∫
Si �

b, for each i (1 � i � n), the integrated duration of state Si over σ can be calculated as∫
Si = ∑

u∈αi tu where αi = {u|(1 � u � m) ∧ (su = Si)}. Consequently, σ satisfies the
duration constraint if and only if a �

∑n
i=1 ci(

∑
u∈αi tu) � b.

Definition 5. For a duration-constrained regular expression (DRE) R, its language over a
finite set Z of states is denoted by L(R). Let R+ be the set of nonnegative real numbers.
DREs and their languages are defined recursively as follows:
(1) ε is a DRE, and L(ε) = {ε}.
(2) If s ∈ Z, then s is a DRE, and L(s) = {(s, t) | t ∈ R+}.
(3) If R1 and R2 are DREs, then R1

∧R2 is a DRE, and

L(R1
∧R2) = {σ1

∧σ2 | σ1 ∈ L(R1), σ2 ∈ L(R2)}.
(4) If R1 and R2 are DREs, then R1 ⊕ R2 is a DRE, and

L(R1 ⊕ R2) = L(R1) ∪ L(R2).

(5) If R is a DRE, then R∗ is a DRE, and

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 89

L(R∗) =
{
σ1

∧ · · · ∧σm
∣∣m � 0 and

m∧
i=1

(σi ∈ L(R))

}
,

where σ1
∧ · · · ∧σm=̂ε when m = 0.

(6) If R is a DRE, and + is a set of duration constraints, then (R,+) is a DRE, and

L((R,+)) = {σ | σ ∈ L(R) satisfies all duration constraints in +}.

Duration-constrained regular expressions form a simple formalism to model real-time
and hybrid systems. Although the traditional regular expressions are powerful enough to
describe the behaviour of finite automata, it is not the case for DREs to describe the be-
haviour of all linear hybrid automata. The reason is that the behaviour of linear hybrid
automata is more complicated than the one of traditional automata since time is intro-
duced. Nevertheless, DREs are powerful enough for describe the behaviour of loop-closed
automata. In the following subsection, we show that any loop-closed automata can have its
behaviour represented by a DRE.

4.2. From loop-closed automata to duration-constrained regular expressions

Now we show that for a loop-closed automaton, we can construct a DRE to represent
its behaviour. The constructing process consists of two steps: first, for a given loop-closed
automaton H , we construct a regular expression K over the set of its locations which
represents the set of all paths in H ; then, we construct a DRE to represent its behaviour
by incorporating duration constraints into K and by replacing locations with states in K .
Here for simplicity and being consistent with regular expressions, we denote a sequence of
locations in a linear hybrid automaton by the form v1

∧v2
∧ · · · ∧vm.

Let H be a linear hybrid automaton, and ρ be a path segment in H which is of the form
v1

∧v2
∧ · · · ∧vm. If ρ is not a simple path segment, then we can find vi and vj (1 � i < j �

m) such that vi = vj , and then we can get a path segment ρ1 which is constructed from
ρ by removing any vk (i < k � j). By applying the above elimination step repeatedly, we
can get a simple path segment ρ′. We say that ρ is an extension of ρ′. We define that any
simple path segment is an extension of itself. In the following, we first construct a regular
expression for a loop which represents the set of the extensions of the loop, then construct
a regular expression for a simple path which represents the set of the extensions of the
simple path.

Let H be a loop-closed automaton, ρ = v1
∧v2

∧ · · · ∧vm be a loop in H , ρ1 be a loop-
enter path of ρ, and ρi = ρ1

∧v2
∧ · · · ∧vi (1 < i < m). Let E(ρ1, ρ) be a regular expres-

sion over the locations in H , which is defined recursively as follows:

E(ρ1, ρ) = v1
∧G2

∧v2
∧G3

∧v3
∧ · · · ∧Gm−1

∧vm−1,

where if there is not any loop which can be entered through ρi (1 < i < m), then Gi =
ε, otherwise Gi =(E(ρi, ρi1) ⊕ E(ρi, ρi2) ⊕ · · · ⊕ E(ρi, ρini))

∗ where ρi1, ρi2, . . . , ρini
are all the loops which can be entered through ρi . Notice that the above recursive definition
is convergent since the number of loops in H are finite and here each loop is combined with
a loop-enter path.

Let H be a loop-closed automaton, ρ = v1
∧v2

∧ · · · ∧vm be a simple path in H , and
ρi = v1

∧v2
∧ · · · ∧vi for any i (1 < i � m). Let F(ρ) be a regular expression over the

locations in H , which is defined as follows:

F(ρ) = v1
∧G2

∧v2
∧G3

∧v3
∧ · · · ∧Gm−1

∧vm−1
∧Gm

∧vm,

90 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

where if there is not any loop which can be entered through ρi(1 < i � m), then Gi = ε,
otherwise Gi = (E(ρi, ρi1) ⊕ E(ρi, ρi2) ⊕ · · · ⊕ E(ρi, ρini))

∗, where ρi1, ρi2, . . . , ρini
are all the loops which can be entered through ρi .

From the definition of F , it follows directly that for a loop-closed automaton, for a
simple path ρ in the automaton, F(ρ) represents the set of the paths which contains all
extensions of ρ. It implies that for a loop-closed automaton, the set of its paths can be
represented by F(ρ1) ⊕ F(ρ2) ⊕ · · · ⊕ F(ρn), where ρ1, ρ2, . . . , ρn are all simple paths
in the automaton.

Then, for a loop-closed automaton H = (Z,X, V,E, vI , α, β) whose set of paths is
represented by a regular expression K , we construct a DRE to represent its behaviour by
incorporating duration constraints into K and by replacing locations with states in K . Each
duration constraint incorporated into K is corresponding to a variable constraint in H . For
a simple path or loop in H , let K1 = F(ρ) or K1 = E(ρ1, ρ) which is of the form

K1 = v1
∧G2

∧v2
∧G3

∧v3
∧ · · · ∧Gm−1

∧vm−1
∧Gm

∧Gm+1,

where for each i (1 < i � m), either Gi = ε or Gi = (Gi1 ⊕ Gi2 ⊕ · · · ⊕ Gini)
∗ (if K1 =

E(ρ1, ρ), then Gm = ε and Gm+1 = ε, otherwise Gm+1 = vm). Since we can give a state
assigned to a location in H with many names, we let each location occurrence in K1 cor-
respond to a different state name for avoiding name collision in duration constraints. Let
D(K1) be a DRE which is defined recursively as follows:

D(K1) = (s1
∧R2

∧s2
∧R3

∧s3
∧ · · · ∧Rm−1

∧sm−1
∧Rm,+),

where
• each si (1 � i < m) is the state name corresponding to vi ,
• if Gi = ε (1 < i � m), then Ri = ε, otherwise

Ri = (D(Gi1) ⊕ D(Gi2) ⊕ · · · ⊕ D(Gini))
∗,

• + is the set of duration constraints whose elements are of the form

a − d �
n∑

i=1

ci

∫
Si � b − d,

where
• a � x � b is a variable constraint labeled on a transition (vi, φi, ψi, vi+1) (1 � i < m);
• either x is reset to d by a transition (vj , φj , ψj , vj+1) (1 � j < i) and is not reset

by any transition (vk, φk, ψk, vk+1) (j < k < i), or x is reset to d by the transition
(vm−1, φm−1, ψm−1, vm) and is not reset by any transition (vk, φk, ψk, vk+1) (1 � k <

i) (in this case let j = 0);
• {S1, S2, . . . , Sn} is the set of the state names which are sk (j < k � i) or occur in D(Gk)

(j < k � i, and any transition occurring in Gk does not reset x); and
• ck (1 � k � n) is the change rate of x in the location corresponding to Sk .

From Definitions 2 and 5, it follows that for a simple path ρ in H , for any timed se-
quence in L(D(F(ρ))), if we replace all state names which correspond to the same location
v with α(v), then we get a timed sequence which represents a behaviour of H . It im-
plies that if ρ1, ρ2, . . . , ρn are all the simple paths in H , then the behaviour of H can be
represented modulo renaming by

D(F(ρ1)) ⊕ D(F(ρ2)) ⊕ · · · ⊕ D(F(ρn)).

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 91

For example, for the hybrid automaton depicted in Fig. 3, its behaviour can be expressed
by the following DRE R:

R=ε ⊕ s0 ⊕
(
s0

∧s1
∧R1,

{∫
s1 = 9

})
⊕
(
s0

∧s1
∧R1

∧s2,

{∫
s1 = 9,

∫
s2 = 2

})
⊕
(
s0

∧s1
∧R1

∧s2
∧s3,

{∫
s1 = 9,

∫
s2 = 2, 2s3 − s2 = 5

})
⊕
(
s0

∧s1
∧R1

∧s2
∧s3

∧s4,

{∫
s1 = 9,

∫
s2 = 2, 2s3 − s2 = 5,

∫
s4 = 2

})
where

R1 =
(
s′

2
∧s′

3
∧s′

4
∧s′

1,

{∫
s′

2 = 2, 2
∫

s′
3 −

∫
s′

2 = 5,∫
s′

4 = 2,
∫

s′
1 − 2

∫
s′

4 = 5

})∗
,

and s′
1, s

′
2, s

′
3, s

′
4 are respectively the another state names corresponding to the locations

v′
1, v2, v3, v4.

We have given a transition procedure from loop-closed automata to DREs. Whether
there is an inverse transition is an interesting question. It seems that both formalisms have
the same expressive power. Since we introduce DREs just for checking positive loop-closed
automata, we leave this open problem here.

5. Checking positive loop-closed automata for linear duration properties

In this section, we solve the problem of checking positive loop-closed automata for
linear duration properties.

A timed sequence σ = (s1, t1)
∧(s2, t2)

∧ · · · ∧(sm, tm) satisfies a linear duration property
P of the form

∑n
i=1 ci

∫
Si � M if and only if

∑n
i=1 ci(

∑
u∈αi tu) � M , where αi = {u |

(1 � u � m) ∧ (su ⇒ Si)}. A linear hybrid automaton satisfies a linear duration property
if and only if every timed sequence representing a behaviour of the automaton satisfies
the linear duration property. A DRE R satisfies a linear duration property P , denoted by
R |= P , if and only if any timed sequences σ ∈ L(R) satisfies P . So, for a loop-closed
automaton whose behaviour can be represented by a DRE, the satisfaction problem for a
linear duration property can be solved by checking if the DRE satisfies the linear duration
property. In the following, we consider the problem of checking if a DRE satisfies a linear
duration property.

5.1. Some concepts concerning duration-constrained regular expressions

First we need to introduce more concepts about DREs which will be used in solving the
problem.

For a DRE R, if L(R) = ∅, then R is said to be empty.
A simple DRE is a DRE in which there is no occurrence of the combinators ∗ (repetition)

and ⊕ (union). From Definition 5, it follows that by renaming states, any simple DRE R

92 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

can be rewritten as a simple DRE R′ of the form (s1
∧s2

∧ · · · ∧sn,+) such that L(R) =
L(R′), where s1, s2, . . . , sn are states. Therefore, from now on, we assume that any simple
DRE is of the form (s1

∧s2
∧ · · · ∧sn,+). Intuitively, a simple path is corresponding to a

simple path segment in an automaton.
For any simple DRE R = (s1

∧s2
∧ · · · ∧sn,+) such that L(R) �= ∅, if each duration con-

straint a �
∑m

i=1 ci
∫
Si � b ∈ + satisfies that a � 0 and b � 0, then R is said to be a

zero-simple DRE, otherwise R is said to be a nonzero-simple DRE. The intuitive meanings
of zero-simple DREs and nonzero-simple DREs are respectively corresponding to zero
loops and nonzero loops in an automaton.

By a normal form we mean a DRE of the form R1 ⊕ R2 ⊕ · · · ⊕ Rm, where each
Ri (1 � i � m) is a simple DRE.

For a DRE R, its sub-expressions are defined recursively by
(1) R is a sub-expression of R.
(2) If R = R1

∧R2 or R = R1 ⊕ R2, where R1 and R2 are DREs, then all the sub-expres-
sions of R1 or of R2 are sub-expressions of R.

(3) If R = R∗
1 or R = (R1,+) where R1 is a DRE, then all the sub-expressions of R1 are

sub-expressions of R.
Let R be a DRE, and R1 be a sub-expression of R. Replacing an occurrence of R1 in R

with a letter X, we obtain a context of X, denoted by C(X). Any context of X, C(X), is
associated with a set of duration constraints which are enforced on the variable X by the
context, which is denoted by 2(C(X)). If a context C(X) does not enforce any duration
constraint on X, then 2(C(X)) = ∅.

Definition 6. A context C(X) of X and 2(C(X)) are defined recursively as
(1) X is a context of X, and 2(X) = ∅.
(2) If C1(X) is a context of X and R is a DRE, then C(X) = C1(X)∧R and C(X) =

R∧C1(X) are contexts of X, and 2(C(X)) = 2(C1(X)).
(3) If C1(X) is a context of X and R is a DRE, then C(X) = C1(X) ⊕ R and C(X) =

R ⊕ C1(X) are contexts of X, and 2(C(X)) = 2(C1(X)).
(4) If C1(X) is a context of X, then C(X) = C1(X)∗ is a context of X, and 2(C(X)) =

2(C1(X)).
(5) If C1(X) is a context of X and + is a set of duration constraints, then C(X) =

(C1(X),+) is a context of X, and 2(C(X)) = 2(C1(X)) ∪ +.

For any context C(X), replacing X in C(X) with a DRE, say R, we obtain a DRE,
denoted by C(R).

5.2. Basic idea for solving the satisfaction problem

Let R = (s1
∧s2

∧ · · · ∧sm,+) be a simple DRE, and P = ∑n
i=1 ci

∫
Si � M be a linear

duration property. From the definition of DREs, it follows that every σ ∈ L(R) is of the
form (s1, t1)

∧(s2, t2)
∧ · · · ∧(sm, tm), and that for any duration constraint a �

∑n
i=1 c

′
iS

′
i �

b ∈ +, t1, t2, . . . , tm must satisfy

a �
n∑

i=1

c′
i


∑

u∈βi
tu


 � b,

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 93

where βi = {u | (1 � u � m) ∧ (su ⇒ S′
i)}, which form a group of linear inequalities on

t1, t2, . . . , tm denoted by C. If the group C of linear inequalities has no solutions, then
L(R) = ∅; otherwise the problem of checking R |= P is equivalent to the problem of find-
ing the maximal value of the linear function

∑n
i=1 ci(

∑
u∈αi tu) where αi = {u | (1 � u �

m) ∧ (su ⇒ Si)} subject to the linear constraint C and checking whether it is not greater
than M . The latter is a linear programming problem.

Let N = R1 ⊕ R2 ⊕ · · · ⊕ Rm be a normal form. It follows that each Ri (1 � i � m)

is a simple DRE. For a linear duration property P , since

N |= P ⇔
m∧
i=1

Ri |= P,

the problem of checking N for P can be solved by solving m problems of checking Ri |= P

for i = 1, 2, . . . , m, which can be solved by linear programming.
Therefore, for a general DRE R, for a linear duration property P , if we can effectively

find a normal form N satisfying that R |= P if and only if N |= P , then we can check
R |= P effectively.

5.3. Foundation of algorithm

For a timed sequence σ = (s1, t1)
∧(s2, t2)

∧ · · · ∧(sm, tm), for an integrated duration∑n
i=0 ci

∫
Si , let θ(σ,

∑n
i=0 ci

∫
Si) be the value of

∑n
i=1 ci

∫
Si evaluated over σ , i.e.

θ

(
σ,

n∑
i=0

ci

∫
Si

)
=

n∑
i=1

ci

(∑
u∈αi

tu

)
,

where αi = {u | (1 � u � m) ∧ (su ⇒ Si)}.
For a state s, for an integrated duration

∑n
i=0 ci

∫
Si , let

ζ

(
s,

n∑
i=0

ci

∫
Si

)
=
∑
u∈β

cu,

where β = {u | (1 � u � n) ∧ (s ⇒ Su)}.
For any simple DRE R such that L(R) �= ∅, for any integrated duration

∑n
i=1 ci

∫
Si ,

let mθ(R,
∑n

i=1 ci
∫
Si) and Mθ(R,

∑n
i=1 ci

∫
Si) denote respectively the infimum and

supremum of the set{
θ

(
σ,

n∑
i=1

ci

∫
Si

) ∣∣∣∣∣ σ ∈ L(R)

}
.

Notice that mθ(R,
∑n

i=1 ci
∫
Si) and Mθ(R,

∑n
i=1 ci

∫
Si) can be calculated by

linear programming, and that for a simple DRE R, for a linear duration property P =∑n
i=1 ci

∫
Si � M , if Mθ(R,

∑n
i=1 ci

∫
Si) > 0, then there is a concatenation of finint

many Rs which does not satisfy P , that is, R∗ �|= P .
For a nonzero-simple DRE R, we say that a duration constraint

a �
n∑

i=1

ci

∫
Si � b

94 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

is positive for R if each state occurring in R is in {S1, S2, . . . , Sn}, b �= ∞, and ci > 0 for
any i (1 � i � n). We say that a context C(X) is bounded for R if there is a positive dura-
tion constraint for R in �(C(X)). Intuitively, a positive duration constraint is corresponding
to a positive constraint in an automaton. The intuitive meaning of C(R), which results from
putting a nonzero-simple DRE R into a bounded context C(X) for R, is corresponding to
that a nonzero loop in an automaton is constrained by a positive constraint.

We say that a context C(X) is free if �(C(X)) = ∅. The intuitive meaning of C(R),
which results from putting a nonzero-simple DRE R into a free context C(X), is correspon-
ding to that a nonzero loop in an automaton is not constrained by any variable constraint.

Let R be a DRE representing the behaviour of a positive loop-closed automaton, and R1
be a sub-expression of R which is an nonzero-simple DRE. Replacing an occurrence of R∗

1
in R with X, we get a context C(X). Notice that since any positive loop-closed automaton
satisfies that any nonzero loop is reducible, either C(X) is bounded for R or C(X) is free.

Let R be a nonzero-simple DRE, and C(X) be a bounded context for R. Notice
that for any duration constraint a �

∑n
i=1 ci

∫
Si � b which is positive for R, mθ(R,∑n

i=1 ci
∫
Si) > 0. Let ω(C(X),R) denote the minimal value of the set{

b/mθ

(
R,

n∑
i=1

ci

∫
Si

)∣∣∣∣∣ a
�

n∑
i=1

ci

∫
Si � b ∈ �(C(X)) is positive for R

}
.

The intuitive meaning of ω(C(X),R) is that in any timed sequence ∈ L(C(R)) there is
no occurrence of any concatenation of more than ω(C(X),R) timed sequences in L(R).

For a DRE R and a linear duration property P , we attempt to find a normal form N such
that L(R) |= P if and only if L(N) |= P by the following procedure:
• Step 0. Let R′ :=R.
• Step 1. For R′, distributing ∧ over ⊕, and + over ⊕, we obtain Q. If Q is a normal form,

then we have done.
• Step 2. For a sub-expression QS of Q which is of the form QS = Q1

∗, replacing an
occurrence of QS in Q with X, we obtain a context CQ(X) such that Q = CQ(QS).

• Step 3. Finding a DRE Q′
S in which there is no occurrence of combinator ∗ satisfying

that CQ(QS) |= P if and only if CQ(Q′
S) |= P . Let R′ :=CQ(Q′

S) and goto Step 1.
Obviously the procedure is correct. The problem is how to find Q′

S in Step 3. The following
lemmas and theorems will help to solve that problem.

Lemma 1. Let R and R′ be DREs, C(X) be a context, and P be a linear duration prop-
erty. If for any σ ∈ L(R), there is σ ′ ∈ L(R′) satisfying that

θ

(
σ,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si, then C(R′) |= P implies C(R) |= P.

Lemma 2. Let R and R′ be nonzero-simple DREs, P = ∑n
i=0 ci

∫
Si � M be a linear du-

ration property, and C(X) be a free context. If for any σ ∈ L(R), there is σ ′ ∈ L(R′) satis-
fying that θ(σ,

∑n
i=0 ci

∫
Si) � θ(σ ′,

∑n
i=0 ci

∫
Si), then C(R′) |= P implies C(R) |= P.

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 95

Lemma 3. Let P = ∑n
i=1 ci

∫
Si � M be a linear duration property, R be a nonzero-

simple DRE such that Mθ(R,
∑n

i=0 ci
∫
Si) � 0, and C(X) be a free context. Then for any

σ ∈ L(C(R∗)), there is σ ′ ∈ L(C(ε)) satisfying that θ(σ,
∑n

i=1 ci
∫
Si) � θ(σ ′,

∑n
i=1

ci
∫
Si).

Lemma 4. Let R be a nonzero-simple DRE, and C(X) be a bounded context for R. Then
L(C(

⊕p

j=0 R
j)) ⊇ L(C(R∗)), where p = �ω(C(X),R)� + 1.

These lemmas can be proved by induction on the structure of context, and their de-
tailed proofs are presented in Appendix B. From these lemmas, we can prove the following
theorems.

Theorem 1. Let R1 and R2 be DREs, P be a linear duration property, and C(X) be a
context. Then C((R1 ⊕ R2)

∗) |= P iff C(R∗
1
∧R∗

2) |= P.

Proof. By Definition 5, L((R1
∗)∧(R2

∗)) ⊆ L((R1 ⊕ R2)
∗). From Lemma 1, the half of

the claim follows, i.e.

C((R1 ⊕ R2)
∗) |= P implies C((R1

∗)∧(R2
∗)) |= P.

The other half can be proved as follows. For any integrated duration
∑n

i=1 ci
∫
Si , for any

σ1 ∈ L(R1) and σ2 ∈ L(R2), since

θ

(
σ1

∧σ2,

n∑
i=1

ci

∫
Si

)
= θ

(
σ1,

n∑
i=1

ci

∫
Si

)
+ θ

(
σ2,

n∑
i=1

ci

∫
Si

)
,

we have θ(σ1
∧σ2,

∑n
i=1 ci

∫
Si) = θ(σ2

∧σ1,
∑n

i=1 ci
∫
Si). Furthermore, for any σ ∈ L

(C((R1 ⊕ R2)
∗), it can be permuted into a σ ′ ∈ L(C((R1

∗)∧(R2
∗))). Hence, from Lemma

1, the result follows. �

Theorem 2. Let R = (s1
∧s2

∧ · · · ∧sm,+) be a zero-simple DRE, P be a linear duration
property, and C(X) be a context. Let R′ = (s1

∧s2
∧ . . . ∧sm,+′), where +′ = +1 ∪ +2 ∪

+3,

+1 =
{

0 �
n∑

i=1

ciSi

∣∣∣∣0 �
∑n

i=1 ciSi � b ∈ +, b �= 0,
and ∃j · (1 � j � n ∧ c′

j < 0)

}
,

+2 =
{

n∑
i=1

ciSi � 0

∣∣∣∣a �
∑n

i=1 ciSi � 0 ∈ +, a �= 0,
and ∃j · (1 � j � n ∧ c′

j > 0)

}
,

+3 =
{

0 �
n∑

i=1

ciSi � 0 | 0 �
n∑

i=1

ciSi � 0 ∈ +

}
.

Then C(R∗) |= P iff C(R′) |= P.

Proof. The half of the claim that C(R′) |= P implies C(R∗) |= P is explained as follows.
By Definition 5, any σ ∈ L(R∗) is of the form σ1

∧σ2
∧ · · · ∧σn, where

σi = (s1, ti1)
∧(s2, ti2)

∧ · · · ∧(sm, tim) ∈ L(R) (i = 1, 2, . . . , n).

96 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

For any j (1 � j � m), let t ′j = t1j + t2j + · · · + tnj , and let

σ ′ = (s1, t
′
1)

∧(s2, t
′
2)

∧ · · · ∧(sm, t ′m).

Since for any i (1 � i � n), ti1, ti2, . . . , tim satisfy +, t ′1, t ′2, . . . , t ′m satisfy +′ as well.
It follows that σ ′ ∈ L(R′). Since θ(σ,

∑n
i=1 ci

∫
Si) = θ(σ ′,

∑n
i=1 ci

∫
Si) for any inte-

grated duration
∑n

i=1 ci
∫
Si , the first half of the claim follows from Lemma 1.

The other half of the claim, i.e. C(R∗) |= P implies C(R′) |= P , can be proved as
follows. For any σ ′ = (s1, t1)

∧(s2, t2)
∧ · · · ∧(sm, tm) ∈ L(R′), since t1, t2, . . . , tm satisfy

+′,
• for any 0 �

∑m
i=1 ci

∫
Si � b ∈ +, we have θ(σ ′,

∑m
i=1 ci

∫
Si) � 0;

• for any a �
∑m

i=1 ci
∫
Si � 0 ∈ +, we have θ(σ ′,

∑m
i=1 ci

∫
Si) � 0; and

• for any 0 �
∑m

i=1 ci
∫
Si � 0 ∈ +, we have θ(σ ′,

∑m
i=1 ci

∫
Si) = 0.

Because for any a �
∑m

i=1 ci
∫
Si � b in +, a � 0 and b � 0, and because + is a finite

set, we can choose a natural number p satisfying that

for any a �
m∑
i=1

ci

∫
Si � b ∈ +, a � θ(σ ′,

m∑
i=1

ci

∫
Si)/p � b.

For each i (1 � i � m), let bi = ti/p, and let σb = (s1, b1)
∧(s2, b2)

∧ · · · ∧(sm, bm). Ob-
viously, σb ∈ L(R). Let

σ = σb
∧σb∧ · · · ∧σb︸ ︷︷ ︸

p

.

It follows that σ ∈ L(R∗). Since θ(σ,
∑n

i=0 ci
∫
Si) = θ(σ ′,

∑n
i=0 ci

∫
Si) for any inte-

grated duration
∑n

i=0 ci
∫
Si , by Lemma 1, C(R∗) |= P implies C(R′) |= P . �

Theorem 3. Let P = ∑n
i=1 ci

∫
Si � M be a linear duration property, R be a nonzero-

simple DRE satisfying that Mθ(R,
∑n

i=0 ci
∫
Si) > 0, and C(X) be a free context. Then

there is a state s occurring in R satisfying that ζ(s,
∑n

i=0 ci
∫
Si) > 0, and C(R∗) |=

P iff C(s) |= P.

Proof. Since R is a nonzero-simple DRE, any σ ∈ L(R) is of the form

(s1, t1)
∧(s2, t2)

∧ · · · ∧(sm, tm),

and θ(σ,
∑n

i=0 ci
∫
Si) = ∑m

i=1 ζ(si,
∑n

i=0 ci
∫
Si)ti . If there is not any state si (1 � i �

m) occurring in R satisfying that ζ(si,
∑n

i=0 ci
∫
Si) > 0, then

Mθ

(
R,

n∑
i=0

ci

∫
Si

)
� 0,

which results in a contradiction. Therefore, there is a state s occurring in R such that
ζ(s,

∑n
i=0 ci

∫
Si) > 0.

The claim that C(R∗) |= P implies C(s) |= P can be proved as follows. Let σ =
(s, t) ∈ L(s). Let σR = (s1, t1)

∧(s2, t2)
∧ · · · ∧(sm, tm) ∈ L(R) satisfying that θ(σR,∑n

i=0 ci
∫
Si) = Mθ(R,

∑n
i=0 ci

∫
Si). Since Mθ(R,

∑n
i=0 ci

∫
Si) > 0 and C(X) is free,

there is a natural number p satisfying that

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 97

θ

(
σR,

n∑
i=0

ci

∫
Si

)
p � θ

(
σ,

n∑
i=0

ci

∫
Si

)
.

Let

σ ′ = σR
∧σR∧ · · · ∧σR︸ ︷︷ ︸

p

.

Then σ ′ ∈ L(R∗). Since θ(σ ′,
∑n

i=0 ci
∫
Si) � θ(σ,

∑n
i=0 ci

∫
Si), by Lemma 2, the claim

holds.
The other claim that C(s) |= P implies C(R∗) |= P can be proved as follows.

For any σ ∈ L(R∗), let t = max(θ(σ,
∑n

i=0 ci
∫
Si)/ζ(s,

∑n
i=0 ci

∫
Si) + 1, 1). Then σ ′ =

(s, t) ∈ L(s). Since θ(σ ′,
∑n

i=0 ci
∫
Si) � θ(σ,

∑n
i=0 ci

∫
Si), by Lemma 2, the claim

holds. �

Theorem 4. Let P = ∑n
i=1 ci

∫
Si � M be a linear duration property, R be a nonzero-

simple DRE satisfying that Mθ(R,
∑n

i=0 ci
∫
Si) � 0, and C(X) be a free context. Then

C(R∗) |= P if and only if C(ε) |= P.

Proof. By Definition 5, L(R∗) ⊇ L(ε) holds, which by Lemma 1 implies a half of the
claim, i.e. C(R∗) |= P implies C(ε) |= P . The other half is straightforward from Lemma
3. �

Theorem 5. Let R be a nonzero-simple DRE, P be a linear duration property, and C(X)

be a bounded context for R. Then C(R∗) |= P if and only if C(
⊕p

j=0R
j) |= P, where

p = �ω(C(X),R)� + 1.

Proof. One half of the claim, i.e. C(R∗) |= P implies C(
⊕p

j=0R
j) |= P is exactly the

same as the proof of Theorem 4. The other half of the claim is a direct consequence of
Lemma 4. �

5.4. Model-checking algorithm

Let R be a DRE representing the behaviour of a positive loop-closed automaton, and
R1 be a sub-expression of R which is an nonzero-simple DRE. Replacing an occurrence
of R∗

1 in R with X, we get a context C(X). Since any positive loop-closed automaton
satisfies that any nonzero loop is reducible, either C(X) is bounded for R or C(X) is
free. So based on the above theorems, we can develop an algorithm to check if a positive
loop-closed automaton H satisfies a linear duration property P = ∑n

i=0 ci
∫
Si � M as

follows.

Step 0. Construct a DRE R to represent the behaviour of H , and let R′ :=R.

Step 1. For R′, distributing ∧ over ⊕, and + over ⊕, we obtain Q.

Step 2. Finding a sub-expression QS of Q which has one of the following four forms:
(1) QS = (R1 ⊕ R2 ⊕ · · · ⊕ Rk)

∗ (k � 2), where every Ri (1 � i � m) is a simple
DRE.

(2) QS = R∗
1 , where R1 is a nonzero-simple DRE.

98 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

(3) QS = R∗
1 , where R1 is a zero-simple DRE.

(4) QS = R∗
1 , where R1 is a simple DRE satisfying that L(R1) = ∅.

If such QS cannot be found, goto Step 7 (note that it is not difficult to prove that if we
cannot find out such a QS , then Q is a normal form); otherwise replacing the occurrence
of QS in Q with X, we get a context CQ(X) such that Q = CQ(QS). Then, if QS has the
first form, goto Step 3; if QS has second form, goto Step 4; if QS has the third form, goto
Step 5; if QS has the fourth form, goto Step 6.

Step 3. By Theorem 1, we transform Q into Q′ = CQ((R1)
∗∧(R2)

∗∧ · · · ∧(Rm)
∗). Thus,

let R′ :=Q′, and goto Step 1.

Step 4. If CQ(X) is bounded for R1, then by Theorem 5 we transform Q into Q′ =
CQ(

⊕p

j=0R
j

1), where p is defined in Theorem 5. Therefore, let R′ :=Q′, and goto Step 1.
Otherwise, CQ(X) is free. If Mθ(R1,

∑n
i=1 ci

∫
Si) > 0, then by Theorem 3, we transform

Q into Q′ = CQ(s) where s is a state defined in Theorem 3. Let R′ :=Q′, and goto Step 1.
Otherwise, by Theorem 4, we transform Q into Q′ = CQ(ε). Let R′ :=Q′, and goto Step 1.

Step 5. By Theorem 2, we transform Q into Q′ = CQ(R′
1), where R′

1 is the simple DRE
defined in Theorem 2. Let R′ :=Q′, and goto Step 1.

Step 6. Since L(R1) = ∅, let R′ :=CQ(ε) and goto Step 1.

Step 7. Since Q is a normal form now, we check Q |= P by linear programming. If Q |= P ,
then R |= P , i.e. H satisfies P ; otherwise R �|= P , i.e. H does not satisfy P .

5.5. Algorithm complexity

The above algorithm is based on linear programming. The linear programming problem
has been well-studied, and can be solved with a polynomial-time algorithm in general.
Indeed many software packages have been developed to efficiently find solutions for linear
programs. In the algorithm, sometimes we need to unfold the combinator ∗ (loop) a finite
number of times (shown in Theorem 5). Each iteration will make the linear programming
problem larger and hence this is the main source of complexity of the algorithm.

We have discovered that for a subclass of positive loop-closed automata, the satisfaction
problem for linear duration properties can be solved efficiently without unfolding loops.
We call this class of linear hybrid automata by zero loop-closed automata, which is de-
scribed in [18]. A zero loop-closed automaton is a positive loop-closed automaton in which
any nonzero loop is not constrained by any variable constraint outside the loop. In this case,
we do not need to use Theorem 5 so that we can use another approach to solving problem
efficiently, which is to traverse all the simple paths in an automaton and checking their
corresponding sequences of locations for a given linear duration property.

6. Related work and conclusion

In this paper, we have shown that for a class of linear hybrid automata called positive
loop-closed automata, the satisfaction problem for linear duration properties can be solved
by linear programming. We extend the traditional regular expressions with duration con-
straints and use them as a language to describe the behaviour of this class of linear hybrid
automata. The extended notation is called duration-constrained regular expressions. Based

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 99

on this formalism, we show that the model-checking problem can be reduced formally to
linear programs.

In general the model checking problem is undecidable for the class of linear hybrid
automata. This paper gives a new result for the decidability of the model checking problem
because the class of positive loop-closed automata is not contained by the decidable classes
of hybrid systems we have found in the literature so far. In [5], the decidability of a class
of linear hybrid systems called integration graphs is reduced to the verification problem
for timed automata [10]. In integration graphs, it is not allowed to test a variable in a loop
which has different change rate in different locations. In [6], a class of hybrid automata,
initialized rectangular automata, are proved to be decidable for linear temporal logic (LTL)
requirements. A symbolic method is presented in [7] such that the tool HYTECH [8] which
runs a symbolic procedure can terminate on initialized rectangular automata. Any initial-
ized rectangular automaton requires that any variable must be reset when its change rate is
changed. In [3], an automatic approach, which attempt to construct the reachable region by
symbolic execution, has been presented. But the procedures often do not terminate. In [11–
13], several approaches to verifying hybrid systems are presented, but they do not result in
any decidable class of hybrid systems.

The idea to check linear duration properties by linear programming comes from [4]
in which the problem for real-time automata is solved by linear programming technique,
which is well established. By developing the techniques in [4], we show in [19,20] that by
linear programming technique the problem can be solved totally for a class of linear hybrid
automata which is included by the class of positive loop-closed automata. In [19,20], we
describe the decidable class of linear hybrid automata by using an extension of regular
expressions with time constraints, but do not give any direct definition of the decidable
hybrid automata. In [18], we show that for a subclass of positive loop-closed automata,
the problem can be solved efficiently based on depth-first search method. In [5] the prob-
lem for timed automata has been solved by mixed integer/linear programming techniques.
In [16,17], a integer time verification technique is developed for solving the problem for
timed automata. In [9], an algorithm has been developed for checking duration-bounded
reachability which asks whether there is a behaviour of an automaton from a start state to a
target state, such that the accumulated duration along the behaviour satisfies a constraint. In
that paper, the coefficients corresponding to the state durations are restricted to nonnegative
integers.

We have developed a model checker based on the result presented in this paper, which
accepts a linear hybrid automaton, expresses its behaviour with a duration-constrained reg-
ular expression if it is a positive loop-closed automaton, and check it for a given linear
duration property. The tool is implemented in Java, and the linear programming software
package which is integrated in the tool is from OR_Objects of DRA Systems which is a free
collection of Java classes for developing operations research, scientific and engineering
applications (http://OpsResearch.com/OR-Objects/index.html).

For real systems, the condition of positive loop-closedness is rational. For example,
for a control system, the loop-closedness means that every repetition of a control process
starts from the same control conditions. Furthermore, in most case, a repetition of a control
process takes time, and a task containing the repetitions of the control process need to be
finished in a given time (as a nonzero loop is constrained by a positive constraint). So we
think that there are a number of real systems that satisfy the condition of positive loop-
closedness and that can thus be modeled by positive loop-closed automata. An important
topic for future work is to do case studies in practical use.

100 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

Appendix A

A.1. Algorithm to check if a linear hybrid automaton is positive loop-closed

An efficient algorithm is described in Fig. 4, which is to check if a linear hybrid automa-
ton (X, V,E, vI , α, β) is positive loop-closed. The algorithm is based on depth-first search
method. The main data structure in the algorithm includes a list currentpath of locations
which is used to record the current paths, and a set loopset of loops which records all the
loops in the automaton. The algorithm consists of three steps. First, we find out all loops,
and check if any simple path is such that any loop satisfies that any variable constraint
inside the loop is not related to any transition outside the loop. Then we check if any
loop is such that any other loop with the same loop-start node satisfies that any variable
constraint inside the loop is not related to any transition outside the loop. Last, for any
loop, from the loop-start node we traverse all simple path segment to check if any simple
path segment satisfies that for any variable constraint outside a loop is not related to any
transition inside the loop; and if any bounded simple path segment is such that any nonzero
loop is reducible. The complexity of the algorithm is proportional to the number of the
simple paths and the size of the longest simple path in an automaton.

Appendix B

B.1. Proof of lemmas

In this section, we present the proof of Lemmas 1–4. These lemmas will be proved by
induction on the structure of context. Since the proof for the structures R ⊕ C1(X) and
R∧C1(X) is similar to the one of the structures C1(X) ⊕ R and C1(X)∧R, it is left for the
reader.

Lemma 1. Let R and R′ be DREs, C(X) be a context, and P be a linear duration prop-
erty. If for any σ ∈ L(R), there is σ ′ ∈ L(R′) satisfying that

θ

(
σ,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si, then C(R′) |= P implies C(R) |= P.

Proof. The lemma follows immediately from the following claim: if for any σ1 ∈ L(R),
there is σ ′

1 ∈ L(R′) such that

θ

(
σ1,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′

1,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si , then for any σ ∈ L(C(R)), there is σ ′ ∈ L(C(R′))

such that

θ

(
σ,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′,

n∑
i=0

ci

∫
Si

)

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 101

Fig. 4. Algorithm for checking if a linear hybrid automaton is zero loop-closed.

for any integrated duration
∑n

i=0 ci
∫
Si . We prove the claim by induction on the structure

of context.

102 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

• Basic case: Let C(X) = X. Then C(R) = R and C(R′) = R′. By assumption, the basic
case holds.

• Induction step: Assume that the claim holds for a context C1(X), and let C(X) be de-
fined from C1(X).

(1) Let C(X) = C1(X) ⊕ R1. Then

C(R) = C1(R) ⊕ R1 and C(R′) = C1(R
′) ⊕ R1.

Since, by Definition 5,

L(C(R)) = L(C1(R)) ∪ L(R1) and L(C(R′)) = L(C1(R
′)) ∪ L(R1),

by the inductive hypothesis, the claim holds.
(2) Let C(X) = C1(X)∧R1. Then

C(R) = C1(R)∧R1 and C(R′) = C1(R
′)∧R1.

For any σ = σ1
∧σR1 ∈ L(C(R)), where σ1 ∈ L(C1(R)) and σR1 ∈ L(R1), by the induc-

tive hypothesis, there is σ ′
1 ∈ L(C1(R

′)) such that

θ

(
σ1,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′

1,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si . Let σ ′ = σ ′

1
∧σR1 . It follows that σ ′ ∈ L(C(R′)).

Since

θ

(
σ ′,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′

1,

n∑
i=0

ci

∫
Si

)
+ θ

(
σR1 ,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si , we have

θ

(
σ,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si , i.e. the claim holds.

(3) Let C(X) = C1(X)∗. Then C(R) = C1(R)∗ and C(R′) = C1(R
′)∗. For any

σ = σ1
∧σ2

∧ · · · ∧σm ∈ L(C(R)),

where each σi ∈ L(C1(R)) (1 � i � m), by the inductive hypothesis, for each i (1 � i �
m), there is σ ′

i ∈ L(C1(R
′)) such that

θ


σi,

n∑
j=0

cj

∫
Sj


 = θ


σ ′

i ,

n∑
j=0

cj

∫
Sj




for any integrated duration
∑n

j=0 cj
∫
Sj . Let

σ ′ = σ ′
1
∧σ ′

2
∧ · · · ∧σ ′

m. It follows that σ ′ ∈ L(C(R′)). Similarly the previous case, we
have

θ

(
σ,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si , i.e. the claim holds.

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 103

(4) Let C(X) = (C1(X),+). Then

C(R) = (C1(R),+) and C(R′) = (C1(R
′),+).

By Definition 5, any σ ∈ L(C(R)) is in L(C1(R)) and satisfies any linear duration
constraint in +, any σ ′ ∈ L(C(R′)) is in L(C1(R

′)) and satisfies any linear duration
constraint in +. Let σ is in L(C1(R)). By the inductive hypothesis, there is σ ′ ∈
L(C1(R

′)) such that

θ

(
σ,

n∑
i=0

ci

∫
Si

)
= θ

(
σ ′,

n∑
i=0

ci

∫
Si

)

for any integrated duration
∑n

i=0 ci
∫
Si . It follows that if σ is in L(C(R)), σ ′ is in L(C

(R′)), which implies the claim holds. �

Lemma 2. Let R and R′ be nonzero-simple DREs, P = ∑n
i=0 ci

∫
Si � M be a lin-

ear duration property, and C(X) be a free context. If for any σ ∈ L(R), there is σ ′ ∈
L(R′) satisfying that θ(σ,

∑n
i=0 ci

∫
Si) � θ(σ ′,

∑n
i=0 ci

∫
Si), then C(R′) |= P implies

C(R) |= P.

Proof. The lemma follows immediately from the following claim: If for any σ1 ∈ L(R),
there is σ ′

1 ∈ L(R′) satisfying that θ(σ1,
∑n

i=0 ci
∫
Si) � θ(σ ′

1,
∑n

i=0 ci
∫
Si), then for any

σ ∈ L(C(R)), there is σ ′ ∈ L(C(R)) satisfying that

θ

(
σ,

n∑
i=0

ci

∫
Si

)
� θ

(
σ ′,

n∑
i=0

ci

∫
Si

)
.

We prove this claim by induction on the structure of context.
• Basic case: Let C(X) = X. Then C(R) = R and C(R′) = R′. Bu assumption, the basic

case holds.
• Induction step: Assume that the claim holds for a context C1(X), and let C(X) be de-

fined from C1(X).

(1) Let C(X) = C1(X) ⊕ R1. Then

C(R) = C1(R) ⊕ R1 and C(R′) = C1(R
′) ⊕ R1.

Since, by Definition 5,

L(C(R)) = L(C1(R)) ∪ L(R1) and L(C(R′)) = L(C1(R
′)) ∪ L(R1),

by the inductive hypothesis, the claim holds.
(2) Let C(X) = C1(X)∧R1. Then

C(R) = C1(R)∧R1 and C(R′) = C1(R
′)∧R1.

From Definition 5, it follows that any σ ∈L(C(R)) is of the form σ1
∧σR1 , where σ1 ∈

L(C1(R)) and σR1 ∈ L(R1). By the inductive hypothesis, there is σ ′
1 ∈ L(C1(R

′))
satisfying that

θ

(
σ1,

n∑
i=0

ci

∫
Si

)
� θ

(
σ ′

1,

n∑
i=0

ci

∫
Si

)
.

104 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

Let σ ′ = σ ′
1
∧σR1 . It follows that σ ′ ∈ L(C(R′)). Since for any linear duration con-

straint a �
∑n

i=0 c
′
i

∫
S′
i � b,

θ

(
σ,

n∑
i=0

c′
i

∫
S′
i

)
= θ

(
σ1,

n∑
i=0

c′
i

∫
S′
i

)
+ θ

(
σR,

n∑
i=0

c′
i

∫
S′
i

)

and

θ

(
σ ′,

n∑
i=0

c′
i

∫
S′
i

)
= θ

(
σ ′

1,

n∑
i=0

c′
i

∫
S′
i

)
+ θ

(
σR,

n∑
i=0

c′
i

∫
S′
i

)
,

we have θ(σ,
∑n

i=0 ci
∫
Si) � θ(σ ′,

∑n
i=0 ci

∫
Si), i.e. the claim holds.

(3) Let C(X) = C1(X)∗. Then

C(R) = C1(R)∗ and rC(R′) = C1(R
′)∗.

By Definition 5, any σ ∈L(C(R)) is of the form σ1
∧σ2

∧ · · · ∧σm, where σi ∈L(C1(R))

for each i (1 � i � m). By the inductive hypothesis, for each i (1 � i � m), there is
σ ′
i ∈ L(C1(R

′)) such that

θ

(
σi,

n∑
i=0

ci

∫
Si

)
� θ

(
σ ′
i ,

n∑
i=0

ci

∫
Si

)

Let σ ′ = σ ′
1
∧σ ′

2
∧ · · · ∧σ ′

m. It follows that σ ′ ∈ L(C(R′)). Similarly the previous case,
we have θ(σ,

∑n
i=0 ci

∫
Si) � θ(σ ′,

∑n
i=0 ci

∫
Si), i.e. the claim holds.

(4) Let C(X) = (C1(X),+). Then

C(R) = (C1(R),+) and C(R′) = (C1(R),+).

Since C(X) is free, + = ∅. It follows that L(C(R)) = L(C1(R)) and L(C(R′)) =
L(C1(R

′)). By the inductive hypothesis, the claim holds. �

Lemma 3. Let P = ∑n
i=1 ci

∫
Si � M be a linear duration property, R be a nonzero-

simple DRE such that Mθ(R,
∑n

i=0 ci
∫
Si) � 0, and C(X) be a free context. Then for

any σ ∈ L(C(R∗)), there is σ ′ ∈ L(C(ε)) satisfying that θ(σ,
∑n

i=1 ci
∫
Si) � θ(σ ′,∑n

i=1 ci
∫
Si).

Proof. We prove the claim by induction on the structure of context.
• Basic case: Let C(X) = X. Then C(R∗) = R∗ and C(ε) = ε. Since Mθ(R,

∑n
i=0

ci
∫
Si) � 0, the basic case holds.

• Induction step: Assume that the claim holds for a context C1(X), and let C(X) be de-
fined from C1(X).

(1) Let C(X) = C1(X) ⊕ R1. Then

C(R∗) = C1(R
∗) ⊕ R1 and C(ε) = C1(ε) ⊕ R1.

Since, by Definition 5, L(C(R∗)) = L(C1(R
∗)) ∪ L(R1), by the inductive hypothesis,

the claim holds.
(2) Let C(X) = C1(X)∧R1. Then C(R∗)) = C1(R

∗)∧R1, and C(ε) = C1(ε)
∧R1. From

Definition 5, it follows that any σ ∈ L(C(R∗)) is of the form σ1
∧σR1 , where σ1 ∈

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 105

L(C1(R
∗)) and σR1 ∈ L(R1). Let By the inductive hypothesis, there is σ ′

1 ∈ L(C1(ε))

satisfying that

θ

(
σ1,

n∑
i=0

ci

∫
Si

)
� θ

(
σ ′

1,

n∑
i=0

ci

∫
Si

)
.

Let σ ′ = σ ′
1
∧σR1 . it follows that σ ′ ∈ L(C(ε)). Since for any linear duration constraint

a �
∑n

i=0 c
′
i

∫
S′
i � b,

θ

(
σ,

n∑
i=0

c′
i

∫
S′
i

)
= θ

(
σ1,

n∑
i=0

c′
i

∫
S′
i

)
+ θ

(
σR,

n∑
i=0

c′
i

∫
S′
i

)

and

θ

(
σ ′,

n∑
i=0

c′
i

∫
S′
i

)
= θ

(
σ ′

1,

n∑
i=0

c′
i

∫
S′
i

)
+ θ

(
σR,

n∑
i=0

c′
i

∫
S′
i

)
,

we have θ(σ,
∑n

i=0 ci
∫
Si) � θ(σ ′,

∑n
i=0 ci

∫
Si), i.e. the claim holds.

(3) Let C(X) = C1(X)∗. Then

C(R∗)) = C1(R
∗)∗ and C(ε) = C1(ε)

∗.

By Definition 5, any σ ∈ L(C(R∗)) is of the form σ1
∧σ2

∧ · · · ∧σm, where σi ∈ L(C1
(R∗)) for each i (1 � i � m). By the inductive hypothesis, for each i (1 � i � m), there
is σ ′

i ∈ L(C1(ε)) satisfying that

θ

(
σi,

n∑
i=0

ci

∫
Si

)
� θ

(
σ ′
i ,

n∑
i=0

ci

∫
Si

)
.

Let σ ′ = σ ′
1
∧σ ′

2
∧ · · · ∧σ ′

m. It follows that σ ′ ∈ L(C(ε)). Similarly the previous case, we
have θ(σ,

∑n
i=0 ci

∫
Si) � θ(σ ′,

∑n
i=0 ci

∫
Si), i.e. the claim holds.

(4) Let C(X) = (C1(X),+). Then

C(R∗) = (C1(R
∗),+) and C(ε) = (C1(ε),+).

Since C(X) is free, + = ∅. It follows that L(C(R∗)) = L(C1(R
∗)) and L(C(ε)) =

L(C1(ε)). By the inductive hypothesis, the claim holds. �

Lemma 4. Let R be a nonzero-simple DRE, and C(X) be a bounded context for R. Then
L(C(

⊕p

j=0 R
j)) ⊇ L(C(R∗)), where p = �ω(C(X),R)� + 1.

Proof. We will prove the following more general claim: Let R be a nonzero-simple DRE,
and (C(X),+) be a bounded context for R. Then, for any

σ ∈ L((C(R∗),+)), σ ∈ L




C


 p⊕

j=0

Rj


 ,+




 ,

where p = �ω((C(X),+), R)� + 1. It is clear that if we let + = ∅, we get the lemma. In
the following, we prove this claim by induction on the structure of context.

106 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

• Basic case: Let C(X) = X. Then (C(R∗),+) = (R∗,+) and
C


 p⊕

j=0

Rj


 ,+


 =


 p⊕

j=0

Rj ,+


 .

By Definition 5, any σ ∈ L((R∗,+)) is of the form σ1
∧σ2

∧ · · · ∧σm where σi ∈ L(R)

for any i (1 � i � m). Since ω((C(X),+), R) is the minimal value of the set{
b/mθ

(
R,

n∑
i=1

ci

∫
Si

)∣∣∣∣∣ a �
n∑

i=1

ci

∫
Si � b ∈ + is positive for R

}

if m > p, then there must be a linear duration constraint in + which is not satisfied by
σ . Thus, m � p. It follows that σ ∈ L((

⊕p

j=0R
j ,+)), which implies the basic case

holds.
• Induction step: Assume that the claim holds for a context C1(X), and let C(X) be de-

fined from C1(X).

(1) Let C(X) = C1(X) ⊕ R1. Then (C(R∗),+) = (C1(R
∗) ⊕ R1,+), and

C


 p⊕

j=0

Rj


 ,+


 =


C1


 p⊕

j=0

Rj


⊕ R1,+


 .

By Definition 6, �((C(X),+)) = �((C1(X),+)). It follows that

ω((C(X),+), R) = ω((C1(X),+), R).

Since (C(X),+) be a bounded context for R, (C1(X),+) be a bounded context for
R. Since, by Definition 5,

L((C(R∗),+)) = L((C1(R
∗),+)) ∪ L((R1,+)),

by the inductive hypothesis, the claim holds.
(2) Let C(X) = C1(X)∧R1. Then (C(R∗),+) = (C1(R

∗)∧R1,+), and
C


 p⊕

j=0

Rj


 ,+


 =


C1


 p⊕

j=0

Rj


 ∧R1,+


 .

By Definition 6, �((C(X),+)) = �((C1(X),+)). It follows that

ω((C(X),+), R) = ω((C1(X),+), R).

By Definition 5, any σ ∈ L((C(R∗),+)) is of the form σ1
∧σR1 , where σ1 ∈ L(C1

(R∗)) and σR1 ∈ L(R1). Let

+′ =
{

min

(
a, θ

(
σ1,

n∑
i=1

ci

∫
Si

))

�
n∑

i=1

ci

∫
Si � b

∣∣∣∣∣ a �
n∑

i=1

ci

∫
Si � b ∈ +

}
.

X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108 107

It follows that σ1 ∈ L((C1(R
∗),+′)). Since (C(X),+) be a bounded context for R,

(C1(X),+′) be a bounded context for R. By the inductive hypothesis, σ1 ∈ L

((C1(
⊕p1

j=0 R
j),+′)), where p1 = �ω((C1(X),+′), R)� + 1. Since p1 � p, we have

σ1 ∈ L((C1(
⊕p

j=0 R
j),+′)). It follows that

σ ∈ L




C


 p⊕

j=0

Rj


 ,+




 ,

i.e. the claim holds.
(3) Let C(X) = C1(X)∗. Then

(C(R∗),+) = (C1(R
∗)∗,+) and

C


 p⊕

j=0

Rj


 ,+


 =


C1


 p⊕

j=0

Rj


∗

,+


 .

By Definition 6, �((C(X),+)) = �((C1(X),+)). It follows that

ω((C(X),+), R) = ω((C1(X),+), R).

By Definition 5, any σ ∈ L((C(R∗),+)) is of the form σ1
∧σ2

∧ · · · ∧σm, where σi ∈
L(C1(R

∗)) for each i (1 � i � m). For each i (1 � i � m), let +i = {min(a, θ(σi,∑n
i=1 ci

∫
Si)) �

∑n
i=1 ci

∫
Si � b | a �

∑n
i=1 ci

∫
Si � b ∈ +}. It follows that σi ∈

L((C1(R
∗),+i) for any i (1 � i � m). Since (C(X),+) is a bounded context for

R, (C1(X),+i) is a bounded context for R. By the inductive hypothesis, for each
i (1 � i � m), σi ∈ L((C1(

⊕pi

j=0 R
j),+i)), where pi = �ω((C1(X),+′

i), R)� + 1.

Since pi � p for any i (1 � i � m), σi ∈ L((C1(
⊕p

j=0 R
j),+′

i)). It follows that σ ∈
L((C(

⊕p

j=0 R
j),+)) i.e. the claim holds.

(4) Let C(X) = (C1(X),+1). Then

(C(X),+) = ((C1(X),+1),+) = (C1(X),+1 ∪ +).

It follows that ω((C(X),+), R) = ω((C1(X),+1 ∪ +),R). Since (C(X),+) is a
bounded context for R, (C1(X),+1 ∪ +) is a bounded context for R. By the inductive
hypothesis, the claim holds. �

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments and sug-
gestions. This work is supported by the National Natural Science Foundation of China
(Nos. 60073031 and 69703009), Jiangsu Province Research Project (No. BK2001033), and
by International Institute for Software Technology, United Nations University (UNU/IIST).

References

[1] Zhou Chaochen, C.A.R. Hoare, A.P. Ravn, A calculus of durations, Information Processing Letter 40 (5)
(1991) 269–276.

[2] T.A. Henzinger, The theory of hybrid automata, in: Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science (LICS 1996), 1996, pp. 278–292.

108 X. Li et al. / Journal of Logic and Algebraic Programming 52–53 (2002) 79–108

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S.
Yovine, The algorithmic analysis of hybrid systems, Theoretical Computer Science 138 (1995) 3–34.

[4] Zhou Chaochen, Zhang Jinzhong, Yang Lu, Li Xiaoshan, Linear duration invariants, in: Formal Techniques
in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science, vol. 863, Springer, Berlin,
1994, pp. 88–109.

[5] Y. Kesten, A. Pnueli, J. Sifakis, S. Yovine, Decidable integration graphs, Information and Computation 150
(2) (1999) 209–243.

[6] T.A. Henzinger, P.W. Kopke, Anuj Puri, Pravin Varaiya, What’s decidable about hybrid automata? Journal
of Computer and System Sciences 57 (1998) 94–124.

[7] T.A. Henzinger, Rupak Majumdar, Symbolic model checking for rectangular hybrid systems, in: Proceed-
ings of the Sixth Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
00), Lecture Notes in Computer Science, Springer, Berlin, 2000.

[8] T.A. Henzinger, P.-H. Ho, H. Wong-Toi, HYTECH: a model checker for hybrid systems, Software Tools
for Technology Transfer 1 (1997) 110–122.

[9] R. Alur, C. Courcoubetis, T.A. Henzinger, Computing accumulated delays in real-time systmes, in: Pro-
ceedings of the Fifth Conference on Computer-Aided Verification, Lecture Notes in Computer Science,
vol. 818, Springer, Berlin, 1993, pp. 181–193.

[10] R. Alur, D. David, A theory of timed automata, Theoretical Computer Science 126 (1994) 183–235.
[11] T.A. Henzinger, P.-H. Ho, H. Wong-Toi, Algorithmic analysis of nonlinear hybrid systems, IEEE Transac-

tions on Automatic Control 43 (1998) 540–554.
[12] T.A. Henzinger, Vlad Rusu, Reachability verification for hybrid automata, in: Proceedings of the First

International Workshop on Hybrid Systems: Computation and Control (HSCC 1998), Lecture Notes in
Computer Science, vol. 1386, Springer, Berlin, 1998, pp. 190–204.

[13] N. Halbwachs, Y.-E. Proy, P. Raymond, Verification of linear hybrid systems by means of convex approx-
imations, in: Proceedings of the International Symposium on Static Analysis, Lecture Notes in Computer
Science, Springer, Berlin, 1994.

[14] G.S. Avrunin, J.C. Corbett, L.K. Dillon, Analyzing partially-implemented real-time systems, IEEE Trans-
actions on Software Engineering 24 (8) (1998) 602–614.

[15] E. Asarin, P. Caspi, O. Maler, A Kleene theorem for timed automata, in: Proceedings of Logic in Computer
Science, IEEE Computer Society, 1997, pp. 160–171.

[16] Z. Jianhua, D.V. Hung, On checking parallel real-time systems for linear duration properties, in: Formal
Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science, vol. 1486,
Springer, Berlin, 1998, pp. 241–250.

[17] Z. Jianhua, D. Van Hung, Checking timed automata for some discretisable duration properties, Research
Report 145, UNU/IIST, Macau, 1998.

[18] L. Xuandong, P. Yu, Z. Jianhua, L. Yong, Z. Tao, Z. Guoliang, Efficient verification of a class of linear
hybrid automata using linear programming, in: Correct Hardware Design and Verification Methods, Lecture
Notes in Computer Science, vol. 2144, Springer, Berlin, 2001, pp. 465–479.

[19] L. Xuandong, D. Van Hung, Z. Tao, Checking hybrid automata for linear duration invariants, in: Advances
in Computing Science—ASIAN’97, Lecture Notes in Computer Science, vol. 1345, Springer, Berlin, 1997,
pp. 166–180.

[20] L. Xuandong, Z. Tao, H. Jianmin, Z. Jianhua, Z. Guoliang, Hybrid regular expressions, in: Hybrid Sys-
tems: Computation and Control, Lecture Notes in Computer Science, vol. 1386, Springer, Berlin, 1998, pp.
384–399.

