23,579 research outputs found

    Prediction of Diblock Copolymer Morphology via Machine Learning

    Full text link
    A machine learning approach is presented to accelerate the computation of block polymer morphology evolution for large domains over long timescales. The strategy exploits the separation of characteristic times between coarse-grained particle evolution on the monomer scale and slow morphological evolution over mesoscopic scales. In contrast to empirical continuum models, the proposed approach learns stochastically driven defect annihilation processes directly from particle-based simulations. A UNet architecture that respects different boundary conditions is adopted, thereby allowing periodic and fixed substrate boundary conditions of arbitrary shape. Physical concepts are also introduced via the loss function and symmetries are incorporated via data augmentation. The model is validated using three different use cases. Explainable artificial intelligence methods are applied to visualize the morphology evolution over time. This approach enables the generation of large system sizes and long trajectories to investigate defect densities and their evolution under different types of confinement. As an application, we demonstrate the importance of accessing late-stage morphologies for understanding particle diffusion inside a single block. This work has implications for directed self-assembly and materials design in micro-electronics, battery materials, and membranes.Comment: 51 page, 11 Figures and 5 figures in the S

    Copy Number Variation of Age-Related Macular Degeneration Relevant Genes in the Korean Population

    Get PDF
    PURPOSE: Studies that analyzed single nucleotide polymorphisms (SNP) in various genes have shown that genetic factors are strongly associated with age-related macular degeneration (AMD) susceptibility. Copy number variation (CNV) may be an additional type of genetic variation that contributes to AMD pathogenesis. This study investigated CNV in 4 AMD-relevant genes in Korean AMD patients and control subjects. METHODS: Four CNV candidate regions located in AMD-relevant genes (VEGFA, ARMS2/HTRA1, CFH and VLDLR), were selected based on the outcomes of our previous study which elucidated common CNVs in the Asian populations. Real-time PCR based TaqMan Copy Number Assays were performed on CNV candidates in 273 AMD patients and 257 control subjects. RESULTS: The predicted copy number (PCN, 0, 1, 2 or 3+) of each region was called using the CopyCaller program. All candidate genes except ARMS2/HTRA1 showed CNV in at least one individual, in which losses of VEGFA and VLDLR represent novel findings in the Asian population. When the frequencies of PCN were compared, only the gain in VLDLR showed significant differences between AMD patients and control subjects (p = 0.025). Comparisons of the raw copy values (RCV) revealed that 3 of 4 candidate genes showed significant differences (2.03 vs. 1.92 for VEGFA, p<0.01; 2.01 vs. 1.97 for CFH, p<0.01; 1.97 vs. 2.01, p<0.01 for ARMS2/HTRA1). CONCLUSION: CNVs located in AMD-relevant genes may be associated with AMD susceptibility. Further investigations encompassing larger patient cohorts are needed to elucidate the role of CNV in AMD pathogenesis

    Salinomycin enhances doxorubicin-induced cytotoxicity in multidrug resistant MCF-7/MDR human breast cancer cells via decreased efflux of doxorubicin

    Get PDF
    Salinomycin is a monocarboxylic polyether antibiotic, which is widely used as an anticoccidial agent. The anticancer property of salinomycin has been recognized and is based on its ability to induce apoptosis in human multidrug resistance (MDR). The present study investigated whether salinomycin reverses MDR towards chemotherapeutic agents in doxorubicin-resistant MCF-7/MDR human breast cancer cells. The results demonstrated that doxorubicin-mediated cytotoxicity was significantly enhanced by salinomycin in the MCF-7/MDR cells, and this occurred in a dose-dependent manner. This finding was consistent with subsequent observations made under a confocal microscope, in which the doxorubicin fluorescence signals of the salinomycin-treated cells were higher compared with the cells treated with doxorubicin alone. In addition, flow cytometric analysis revealed that salinomycin significantly increased the net cellular uptake and decreased the efflux of doxorubicin. The expression levels of MDR-1 and MRP-1 were not altered at either the mRNA or protein levels in the cells treated with salinomycin. These results indicated that salinomycin was mediated by its ability to increase the uptake and decrease the efflux of doxorubicin in MCF-7/MDR cells. Salinomycin reversed the resistance of doxorubicin, suggesting that chemotherapy in combination with salinomycin may benefit MDR cancer therapyopen

    Isolation and functional characterization of CE1 binding proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abscisic acid (ABA) is a plant hormone that controls seed germination, protective responses to various abiotic stresses and seed maturation. The ABA-dependent processes entail changes in gene expression. Numerous genes are regulated by ABA, and promoter analyses of the genes revealed that <it>cis</it>-elements sharing the ACGTGGC consensus sequence are ubiquitous among ABA-regulated gene promoters. The importance of the core sequence, which is generally known as ABA response element (ABRE), has been demonstrated by various experiments, and its cognate transcription factors known as ABFs/AREBs have been identified. Although necessary, ABRE alone is not sufficient, and another <it>cis</it>-element known as "coupling element (CE)" is required for full range ABA-regulation of gene expression. Several CEs are known. However, despite their importance, the cognate transcription factors mediating ABA response via CEs have not been reported to date. Here, we report the isolation of transcription factors that bind one of the coupling elements, CE1.</p> <p>Results</p> <p>To isolate CE1 binding proteins, we carried out yeast one-hybrid screens. Reporter genes containing a trimer of the CE1 element were prepared and introduced into a yeast strain. The yeast was transformed with library DNA that represents RNA isolated from ABA-treated Arabidopsis seedlings. From the screen of 3.6 million yeast transformants, we isolated 78 positive clones. Analysis of the clones revealed that a group of AP2/ERF domain proteins binds the CE1 element. We investigated their expression patterns and analyzed their overexpression lines to investigate the <it>in vivo </it>functions of the CE element binding factors (CEBFs). Here, we show that one of the CEBFs, AtERF13, confers ABA hypersensitivity in Arabidopsis, whereas two other CEBFs enhance sugar sensitivity.</p> <p>Conclusions</p> <p>Our results indicate that a group of AP2/ERF superfamily proteins interacts with CE1. Several CEBFs are known to mediate defense or abiotic stress response, but the physiological functions of other CEBFs remain to be determined. Our <it>in vivo </it>functional analysis of several CEBFs suggests that they are likely to be involved in ABA and/or sugar response. Together with previous results reported by others, our current data raise an interesting possibility that the coupling element CE1 may function not only as an ABRE but also as an element mediating biotic and abiotic stress responses.</p

    Sustainability of Korean National Health Insurance

    Get PDF
    Korean National Health Insurance (NHI) was established during only 12 yr from its inception (1977-1989), providing universal medical coverage to the entire nation and making a huge contribution to medical security. However, the program now faces many challenges in terms of sustainability. The low birth rates, aging population, low economic growth, and escalating demands for welfare, as well as unification issues, all add pressure to the sustainability of NHI. The old paradigm of low contribution - low benefits coverage - low NHI's fee schedule needs to be replaced by a new paradigm of proper contribution - adequate benefit coverage - fair NHI's fee schedule. This new paradigm will require reform of NHI's operating system, funding, and spending

    Disrupted-in-schizophrenia 1 (DISC1) Regulates Dysbindin Function by Enhancing Its Stability

    Get PDF
    Dysbindin and DISC1 are schizophrenia susceptibility factors playing roles in neuronal development. Here we show that the physical interaction between dysbindin and DISCI is critical for the stability of dysbindin and for the process of neurite outgrowth. We found that DISCI forms a complex with dysbindin and increases its stability in association with a reduction in ubiquitylation. Furthermore, knockdown of DISCI or expression of a deletion mutant, DISCI lacking amino acid residues 403-504 of DISC1 (DISC1(Delta 403-504)), effectively decreased levels of endogenous dysbindin. Finally, the neurite outgrowth defect induced by knockdown of DISCI was partially reversed by coexpression of dysbindin. Taken together, these results indicate that dysbindin and DISC1 form a physiologically functional complex that is essential for normal neurite outgrowth.X111211Ysciescopu

    Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    Get PDF
    Over the last several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally because of limitations in the available visualization techniques and the complexity of the phenomena. To overcome these limitations and elucidate the CHF enhancement mechanism on the structured surfaces, we introduce synchrotron x-ray imaging with high spatial (similar to 2 mu m) and temporal (similar to 20,000 Hz) resolutions. This technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.11Ysciescopu
    corecore