4,117 research outputs found

    Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.

    Get PDF
    Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated

    Theory of electronic properties and quantum spin blockade in a gated linear triple quantum dot with one electron spin each

    Full text link
    We present a theory of electronic properties and the spin blockade phenomena in a gated linear triple quantum dot. Quadruple points where four different charge configurations are on resonance, particularly involving (1,1,1) configuration, are considered. In the symmetric case, the central dot is biased to higher energy and a single electron tunnels through the device when (1,1,1) configuration is resonant with (1,0,1),(2,0,1),(1,0,2) configurations. The electronic properties of a triple quantum dot are described by a Hubbard model containing two orbitals in the two unbiased dots and a single orbital in the biased dot. The transport through the triple quantum dot molecule involves both singly and doubly occupied configurations and necessitates the description of the (1,1,1) configuration beyond the Heisenberg model. Exact eigenstates of the triple quantum dot molecule with up to three electrons are used to compute current assuming weak coupling to the leads and non-equilibrium occupation of quantum molecule states obtained from the rate equation. The intra-molecular relaxation processes due to acoustic phonons and cotunneling with the leads are included, and are shown to play a crucial role in the spin blockade effect. We find a quantum interference-based spin blockade phenomenon at low source-drain bias and a distinct spin blockade due to a trap state at higher bias. We also show that, for an asymmetric quadruple point with (0,1,1),(1,1,1,),(0,2,1),(0,1,2) configurations on resonance, the spin blockade is analogous to the spin blockade in a double quantum dot

    Modulating Foveal Representation can Influence Visual Discrimination in the Periphery

    Get PDF
    A previous study by Williams et al. (2008) provided evidence for a novel form of feedback in the visual system, whereby peripheral information is contained in foveal retinotopic cortex. Beyond its possible implication for peripheral object recognition, few studies have examined the effect of a direct behavioral manipulation of the foveal feedback representation. To address this question, we measured participants\u27 peripheral visual discrimination performance while modulating their foveal representation in a series of psychophysical experiments. On each trial, participants discriminated the identities of briefly presented novel, three-dimensional objects or the orientations of gratings in a peripheral location while fixating at the center. Besides the peripheral target, another stimulus (foil) was also presented and masked at the fovea. Our results showed that for objects, when the foveal foil that was identical to the peripheral target was presented 150 ms after the onset of the peripheral target, visual discrimination of the peripheral target was improved. This congruency effect occurred even though participants did not consciously perceive the foveal stimulus. No such effect was observed when the foveal foil was presented simultaneously with the peripheral target, or when the foil was presented in a parafoveal location. The foil effect in gratings was different from that in objects in terms of its effective timing and foveal specificity, suggesting that foveal feedback may be specific to high-level objects. These results indicate that modulating foveal information can affect individuals\u27 ability to discriminate peripheral objects, suggesting a functional role of foveal representations in peripheral visual perception

    Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors

    Get PDF
    An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance. Transistors and their arrays fully based on intrinsically stretchable electronic materials were developed, and they retained electrical performances without substantial loss when subjected to 50% stretching. Fully rubbery integrated electronics and logic gates were developed, and they also functioned reliably upon mechanical stretching. A rubbery active matrix based elastic tactile sensing skin to map physical touch was demonstrated to illustrate one of the applications
    corecore