3,886 research outputs found

    Photon-induced vanishing of magnetoconductance in 2D electrons on liquid He

    Full text link
    We report on a novel transport phenomenon realized by optical pumping in surface state electrons on helium subjected to perpendicular magnetic fields. The electron dynamics is governed by the photon-induced excitation and scattering-mediated transitions between electric subbands. In a range of magnetic fields, we observe vanishing longitudinal conductivity sigma_xx. Our result suggests the existence of radiation-induced zero-resistance states in the nondegenerate 2D electron system.Comment: 4 pages, 5 figure

    Bistability and Hysteresis of Intersubband Absorption in Strongly Interacting Electrons on Liquid Helium

    Full text link
    We study nonlinear inter-subband microwave absorption of electrons bound to the liquid helium surface. Already for a comparatively low radiation intensity, resonant absorption due to transitions between the two lowest subbands is accompanied by electron overheating. The overheating results in a significant population of higher subbands. The Coulomb interaction between electrons causes a shift of the resonant frequency, which depends on the population of the excited states and thus on the electron temperature TeT_e. The latter is determined experimentally from the electron photoconductivity. The experimentally established relationship between the frequency shift and TeT_e is in reasonable agreement with the theory. The dependence of the shift on the radiation intensity introduces nonlinearity into the rate of the inter-subband absorption resulting in bistability and hysteresis of the resonant response. The hysteresis of the response explains the behavior in the regime of frequency modulation, which we observe for electrons on liquid 3^3He and which was previously seen for electrons on liquid 4^4He

    Microwave absorption saturation and decay heating of surface electrons on liquid helium

    No full text
    The microwave (MW) resonance absorption and decay heating of surface electrons (SEs) on liquid ⁴He are theoretically studied for the vapor atom scattering regime. The decay heating is shown to be an essential occurrence of a MW resonance experiment appearing even at low excitation rates. It strongly affects the occupancies of surface levels and the broadening of resonance lines long before the absorption suturation condition is reached. Contrary to the model of cold SEs usually used for description of the MW resonance, the new theory leads to MW absorption saturation when only a very small fraction of electrons (less than 10%) is left on the ground and the first excited levels

    Angle-resolved photoemission spectroscopy with an in situ\textit{in situ} tunable magnetic field

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for probing the momentum-resolved single-particle spectral function of materials. Historically, in situ\textit{in situ} magnetic fields have been carefully avoided as they are detrimental to the control of photoelectron trajectory during the photoelectron detection process. However, magnetic field is an important experimental knob for both probing and tuning symmetry-breaking phases and electronic topology in quantum materials. In this paper, we introduce an easily implementable method for realizing an in situ\textit{in situ} tunable magnetic field at the sample position in an ARPES experiment and analyze magnetic field induced artifacts in ARPES data. Specifically, we identified and quantified three distinct extrinsic effects of a magnetic field: Fermi surface rotation, momentum shrinking, and momentum broadening. We examined these effects in three prototypical quantum materials, i.e., a topological insulator (Bi2_2Se3_3), an iron-based superconductor (LiFeAs), and a cuprate superconductor (Bi2_2Sr2_2CaCu2_2O8+x_{8+x}), and demonstrate the feasibility of ARPES measurements in the presence of a controllable magnetic field. Our studies lay the foundation for the future development of the technique and interpretation of ARPES measurements of field-tunable quantum phases.Comment: 23 pages, 6 figure

    Distinct cell proliferation, myogenic differentiation, and gene expression in skeletal muscle myoblasts of layer and broiler chickens

    Get PDF
    Myoblasts play a central role during skeletal muscle formation and growth. Precise understanding of myoblast properties is thus indispensable for meat production. Herein, we report the cellular characteristics and gene expression profiles of primary-cultured myoblasts of layer and broiler chickens. Broiler myoblasts actively proliferated and promptly differentiated into myotubes compared to layer myoblasts, which corresponds well with the muscle phenotype of broilers. Transcriptomes of layer and broiler myoblasts during differentiation were quantified by RNA sequencing. Ontology analyses of the differentially expressed genes (DEGs) provided a series of extracellular proteins as putative markers for characterization of chicken myogenic cells. Another ontology analyses demonstrated that broiler myogenic cells are rich in cell cycle factors and muscle components. Independent of these semantic studies, principal component analysis (PCA) statistically defined two gene sets: one governing myogenic differentiation and the other segregating layers and broilers. Thirteen candidate genes were identified with a combined study of the DEGs and PCA that potentially contribute to proliferation or differentiation of chicken myoblasts. We experimentally proved that one of the candidates, enkephalin, an opioid peptide, suppresses myoblast growth. Our results present a new perspective that the opioids present in feeds may influence muscle development of domestic animals.Articlejournal articl

    Excitonic condensation in a symmetric electron-hole bilayer

    Full text link
    Using Diffusion Monte Carlo simulations we have investigated the ground state of a symmetric electron-hole bilayer and determined its phase diagram at T=0. We find clear evidence of an excitonic condensate, whose stability however is affected by in-layer electronic correlation. This stabilizes the electron-hole plasma at large values of the density or inter-layer distance, and the Wigner crystal at low density and large distance. We have also estimated pair correlation functions and low order density matrices, to give a microscopic characterization of correlations, as well as to try and estimate the condensate fraction.Comment: 4 pages, 3 figures, 2 table

    Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields

    Full text link
    The interaction potential of a two-dimensional system of excitons with spatially separated electron-hole layers is considered in the strong magnetic field limit. The excitons are assumed to have free dynamics in the xx-yy plane, while being constrained or `polarized' in the zz direction. The model simulates semiconductor double layer systems under strong magnetic field normal to the layers. The {\em residual} interaction between excitons exhibits interesting features, arising from the coupling of the center-of-mass and internal degrees of freedom of the exciton in the magnetic field. This coupling induces a dynamical dipole moment proportional to the center-of-mass magnetic moment of the exciton. We show the explicit dependence of the inter-exciton potential matrix elements, and discuss the underlying physics. The unusual features of the interaction potential would be reflected in the collective response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi

    Development of pericardial fat count images using a combination of three different deep-learning models

    Full text link
    Rationale and Objectives: Pericardial fat (PF), the thoracic visceral fat surrounding the heart, promotes the development of coronary artery disease by inducing inflammation of the coronary arteries. For evaluating PF, this study aimed to generate pericardial fat count images (PFCIs) from chest radiographs (CXRs) using a dedicated deep-learning model. Materials and Methods: The data of 269 consecutive patients who underwent coronary computed tomography (CT) were reviewed. Patients with metal implants, pleural effusion, history of thoracic surgery, or that of malignancy were excluded. Thus, the data of 191 patients were used. PFCIs were generated from the projection of three-dimensional CT images, where fat accumulation was represented by a high pixel value. Three different deep-learning models, including CycleGAN, were combined in the proposed method to generate PFCIs from CXRs. A single CycleGAN-based model was used to generate PFCIs from CXRs for comparison with the proposed method. To evaluate the image quality of the generated PFCIs, structural similarity index measure (SSIM), mean squared error (MSE), and mean absolute error (MAE) of (i) the PFCI generated using the proposed method and (ii) the PFCI generated using the single model were compared. Results: The mean SSIM, MSE, and MAE were as follows: 0.856, 0.0128, and 0.0357, respectively, for the proposed model; and 0.762, 0.0198, and 0.0504, respectively, for the single CycleGAN-based model. Conclusion: PFCIs generated from CXRs with the proposed model showed better performance than those with the single model. PFCI evaluation without CT may be possible with the proposed method
    corecore