2,173 research outputs found

    A flux-mnemonic permanent magnet brushless motor for electric vehicles

    Get PDF
    In this paper, a new permanent magnet (PM) brushless motor is proposed for electric vehicles. The key is to incorporate the concept of memory motors, namely, the online tunable flux-mnemonic PMs, into the stator doubly fed doubly salient PM motor, hence achieving effective air-gap flux control. By further employing the outer-rotor and double-layer-stator topology, the proposed motor takes the definite advantages of compact structure, low armature reaction, and direct-drive capability. Increasingly, this motor can offer the unique features of pole dropping and pole reversing. Finite element analysis and, hence, computer simulation are given to verify the validity of the proposed motor. © 2008 American Institute of Physics.link_to_subscribed_fulltextThe 52nd Annual Conference on Magnetism and Magnetic Materials, Tampa Bay, Florida, 5–9 November 2007. In Journal Of Applied Physics, 2008, v. 103 n. 7, article no. 07F10

    Analysis of doubly salient memory motors using preisach theory

    Get PDF
    With the introduction of doubly salient memory (DSM) motors, the flux controllability and hence the speed range of permanent magnet (PM) motors have reached a new height. This paper presents a new method to accurately analyze the DSM motor. The key is to incorporate the general expressions of the Preisach hysteresis model (PHM) of the AlNiCo-PM into the time-stepping finite element method (TS-FEM). Based on the proposed PHM-TS-FEM, both static and transient performances of the DSM motor are successfully simulated. Finally, the validity and accuracy of the proposed method are verified by experimental results. © 2009 IEEE.published_or_final_versio

    Comparison of coaxial magnetic gears with different topologies

    Get PDF
    This paper quantitatively compares two coaxial magnetic gears (CMGs) with different topologies, namely, the CMG installed with radially magnetized permanent magnets (CMGRM) and the CMG installed with Halbach magnetized permanent magnets (CMGHM). By using the 3D finite element method, the end-effect and the performances of both CMGs are investigated. Analysis results show that the CMGHM can offer higher pull-out torque, lower torque ripple and lower iron losses than the CMGRM. Experimental results are also given for verification. © 2009 IEEE.published_or_final_versio

    Selectively Cross-Linked Tetra-PEG Hydrogels Provide Control over Mechanical Strength with Minimal Impact on Diffusivity.

    Get PDF
    Synthetic hydrogels formed from poly(ethylene glycol) (PEG) are widely used to study how cells interact with their extracellular matrix. These in vivo-like 3D environments provide a basis for tissue engineering and cell therapies but also for research into fundamental biological questions and disease modeling. The physical properties of PEG hydrogels can be modulated to provide mechanical cues to encapsulated cells; however, the impact of changing hydrogel stiffness on the diffusivity of solutes to and from encapsulated cells has received only limited attention. This is particularly true in selectively cross-linked "tetra-PEG" hydrogels, whose design limits network inhomogeneities. Here, we used a combination of theoretical calculations, predictive modeling, and experimental measurements of hydrogel swelling, rheological behavior, and diffusion kinetics to characterize tetra-PEG hydrogels' permissiveness to the diffusion of molecules of biologically relevant size as we changed polymer concentration, and thus hydrogel mechanical strength. Our models predict that hydrogel mesh size has little effect on the diffusivity of model molecules and instead predicts that diffusion rates are more highly dependent on solute size. Indeed, our model predicts that changes in hydrogel mesh size only begin to have a non-negligible impact on the concentration of a solute that diffuses out of hydrogels for the smallest mesh sizes and largest diffusing solutes. Experimental measurements characterizing the diffusion of fluorescein isothiocyanate (FITC)-labeled dextran molecules of known size aligned well with modeling predictions and suggest that doubling the polymer concentration from 2.5% (w/v) to 5% produces stiffer gels with faster gelling kinetics without affecting the diffusivity of solutes of biologically relevant size but that 10% hydrogels can slow their diffusion. Our findings provide confidence that the stiffness of tetra-PEG hydrogels can be modulated over a physiological range without significantly impacting the transport rates of solutes to and from encapsulated cells

    Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain

    Get PDF
    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine

    Left to Their Own Devices: Breakdowns in United States Medical Device Premarket Review

    Get PDF
    Using examples from recent FDA regulatory proceedings, Jonas Hines and colleagues critique the medical device premarket review and identify eight weaknesses in the process that should be remedied

    Back-incident SiGe-Si multiple quantum-well resonant-cavity-enhanced photodetectors for 13-mu m operation

    Get PDF
    A back-incident Si-0.65 Ge-0.35/Si multiple quantum-well resonant-cavity-enhanced photodetector operating near 1.3 mum is demonstrated on a separation-by-implantation-oxygen substrate. The resonant cavity is composed of an electron-beam evaporated SiO2-Si distributed Bragg reflector as a top mirror and the interface between the buried SiO2 and the Si substrate as a bottom mirror. We have obtained the responsivity as high as 31 mA/WI at 1.305 mum and the full width at half maximum of 14 nm
    corecore