141 research outputs found

    Engineering mobility in quasiperiodic lattices with exact mobility edges

    Full text link
    We investigate the effect of an additional modulation parameter δ\delta on the mobility properties of quasiperiodic lattices described by a generalized Ganeshan-Pixley-Das Sarma model with two on site modulation parameters. For the case with bounded quasiperiodic potential, we unveil the existence of self-duality relation, independent of δ\delta. By applying Avila's global theory, we analytically derive Lyapunov exponents in the whole parameter space, which enables us to determine mobility edges or anomalous mobility edges exactly. Our analytical results indicate that the mobility edge equation is described by two curves and their intersection with the spectrum gives the true mobility edge. Tuning the strength parameter δ\delta can change the spectrum of the quasiperiodic lattice, and thus engineers the mobility of quasi-periodic systems, giving rise to completely extended, partially localized, and completely localized regions. For the case with unbounded quasiperiodic potential, we also obtain the analytical expression of the anomalous mobility edge, which separates localized states from critical states. By increasing the strength parameter δ\delta, we find that the critical states can be destroyed gradually and finally vanishes.Comment: 10 pages,6 figure

    Inferring Fluid Dynamics via Inverse Rendering

    Full text link
    Humans have a strong intuitive understanding of physical processes such as fluid falling by just a glimpse of such a scene picture, i.e., quickly derived from our immersive visual experiences in memory. This work achieves such a photo-to-fluid-dynamics reconstruction functionality learned from unannotated videos, without any supervision of ground-truth fluid dynamics. In a nutshell, a differentiable Euler simulator modeled with a ConvNet-based pressure projection solver, is integrated with a volumetric renderer, supporting end-to-end/coherent differentiable dynamic simulation and rendering. By endowing each sampled point with a fluid volume value, we derive a NeRF-like differentiable renderer dedicated from fluid data; and thanks to this volume-augmented representation, fluid dynamics could be inversely inferred from the error signal between the rendered result and ground-truth video frame (i.e., inverse rendering). Experiments on our generated Fluid Fall datasets and DPI Dam Break dataset are conducted to demonstrate both effectiveness and generalization ability of our method

    Research on the Post Occupancy Evaluation of Green Public Building Environmental Performance Combined with Carbon Emissions Accounting

    Get PDF
    AbstractThe development of green building in China has reached a new stage, needs to turn to the total energy consumption control from the technology control[1]. We should avoid packing technologies in green building projects and regard achieving good environmental performance as the fundamental goal. In this paper, we use the method of post-occupancy evaluation and regard the building environmental performance as the core of the evaluation system, in order to reduce the influence on the accuracy of results from the measures evaluation. We establish the evaluation index system of green public building environmental performance in severe cold and cold regions, including the index of building life-cycle carbon emissions accounting. And we set up the application plan of index and the scoring method, then we put forward a kind of evaluation grade based on environmental performance level, finally proposed the POE System of Green Public Building Environmental Performance in Severe Cold and Cold Regions (POE-GPBEPC)

    Skeleton2Humanoid: Animating Simulated Characters for Physically-plausible Motion In-betweening

    Full text link
    Human motion synthesis is a long-standing problem with various applications in digital twins and the Metaverse. However, modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions and consequently they usually produce unrealistic human motions. In order to solve this problem, we propose a system ``Skeleton2Humanoid'' which performs physics-oriented motion correction at test time by regularizing synthesized skeleton motions in a physics simulator. Concretely, our system consists of three sequential stages: (I) test time motion synthesis network adaptation, (II) skeleton to humanoid matching and (III) motion imitation based on reinforcement learning (RL). Stage I introduces a test time adaptation strategy, which improves the physical plausibility of synthesized human skeleton motions by optimizing skeleton joint locations. Stage II performs an analytical inverse kinematics strategy, which converts the optimized human skeleton motions to humanoid robot motions in a physics simulator, then the converted humanoid robot motions can be served as reference motions for the RL policy to imitate. Stage III introduces a curriculum residual force control policy, which drives the humanoid robot to mimic complex converted reference motions in accordance with the physical law. We verify our system on a typical human motion synthesis task, motion-in-betweening. Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy. Code will be released for research purposes at: https://github.com/michaelliyunhao/Skeleton2HumanoidComment: Accepted by ACMMM202

    A Solution to Co-occurrence Bias: Attributes Disentanglement via Mutual Information Minimization for Pedestrian Attribute Recognition

    Full text link
    Recent studies on pedestrian attribute recognition progress with either explicit or implicit modeling of the co-occurrence among attributes. Considering that this known a prior is highly variable and unforeseeable regarding the specific scenarios, we show that current methods can actually suffer in generalizing such fitted attributes interdependencies onto scenes or identities off the dataset distribution, resulting in the underlined bias of attributes co-occurrence. To render models robust in realistic scenes, we propose the attributes-disentangled feature learning to ensure the recognition of an attribute not inferring on the existence of others, and which is sequentially formulated as a problem of mutual information minimization. Rooting from it, practical strategies are devised to efficiently decouple attributes, which substantially improve the baseline and establish state-of-the-art performance on realistic datasets like PETAzs and RAPzs. Code is released on https://github.com/SDret/A-Solution-to-Co-occurence-Bias-in-Pedestrian-Attribute-Recognition.Comment: Accepted in IJCAI2

    Detecting Silent Data Corruptions in Aerospace-Based Computing Using Program Invariants

    Get PDF
    Soft error caused by single event upset has been a severe challenge to aerospace-based computing. Silent data corruption (SDC) is one of the results incurred by soft error. SDC occurs when a program generates erroneous output with no indications. SDC is the most insidious type of results and very difficult to detect. To address this problem, we design and implement an invariant-based system called Radish. Invariants describe certain properties of a program; for example, the value of a variable equals a constant. Radish first extracts invariants at key program points and converts invariants into assertions. It then hardens the program by inserting the assertions into the source code. When a soft error occurs, assertions will be found to be false at run time and warn the users of soft error. To increase the coverage of SDC, we further propose an extension of Radish, named Radish_D, which applies software-based instruction duplication mechanism to protect the uncovered code sections. Experiments using architectural fault injections show that Radish achieves high SDC coverage with very low overhead. Furthermore, Radish_D provides higher SDC coverage than that of either Radish or pure instruction duplication
    corecore