
Research Article
Detecting Silent Data Corruptions in Aerospace-Based
Computing Using Program Invariants

Junchi Ma,1,2 Dengyun Yu,3 Yun Wang,1,2 Zhenbo Cai,3 Qingxiang Zhang,3 and Cheng Hu1,2

1School of Computer Science & Engineering, Southeast University, Nanjing 211189, China
2Key Laboratory of Computer Network and Information Integration, Ministry of Education, Nanjing 211189, China
3Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

Correspondence should be addressed to Junchi Ma; bjbzmjc@126.com

Received 20 April 2016; Revised 20 September 2016; Accepted 10 October 2016

Academic Editor: Christopher J. Damaren

Copyright © 2016 Junchi Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Soft error caused by single event upset has been a severe challenge to aerospace-based computing. Silent data corruption (SDC) is
one of the results incurred by soft error. SDC occurs when a program generates erroneous output with no indications. SDC is the
most insidious type of results and very difficult to detect. To address this problem, we design and implement an invariant-based
system called Radish. Invariants describe certain properties of a program; for example, the value of a variable equals a constant.
Radish first extracts invariants at key program points and converts invariants into assertions. It then hardens the program by
inserting the assertions into the source code. When a soft error occurs, assertions will be found to be false at run time and warn the
users of soft error. To increase the coverage of SDC, we further propose an extension of Radish, named Radish D, which applies
software-based instruction duplication mechanism to protect the uncovered code sections. Experiments using architectural fault
injections show that Radish achieves high SDC coverage with very low overhead. Furthermore, Radish D provides higher SDC
coverage than that of either Radish or pure instruction duplication.

1. Introduction

A single event upset (SEU) is a change of state caused by one
single ionizing particle (ions, electrons, photons, etc.) striking
a sensitive node in amicroelectronic device [1, 2].The error in
device output or operation caused as a result of SEU is called
soft error. Because this type of error does not reflect a perma-
nent failure, it is termed soft [3]. The first reports of failures
attributed to cosmic rays emerged in 1975 when space-borne
electronics malfunctioned [4]. In 1993, neutron-induced
soft errors were even observed in airborne computers at
commercial aircraft flight altitudes [5]. Soft error has emerged
as a key challenge in aerospace-based computing [6, 7].

The raw error rate per device (e.g., latch, SRAM cell) in a
bulk CMOS process is projected to remain roughly constant
or decrease slightly; thus soft error rate per processor will
grow with Moore’s law in direct proportion to the number
of devices added to a processor in the next generation [8].
Unless we develop and apply more effective soft error mitiga-
tion techniques, the trend is inevitable.

The result of soft error is categorized into four types
[9], benign, crash, hang, and silent data corruption (SDC),
shown in Figure 1. Benign means the error is masked and the
program gets the right output; crash means the error causes
the program to stop execution; hang means that resource is
exhausted but the program still cannot finish execution; silent
data corruption means that the program generates erroneous
output. When crash or hang occurs, the system is aware that
the program is executed abnormally. Compared with the oth-
ers, SDC is more insidious since it occurs without any indica-
tions. Applying the erroneous output incurred by SDC may
lead to loss of properties and even casualties. Erroneous
output is definitely more dangerous than none, since users
cannot be aware of errors until a serious consequence occurs.
This paper mainly focuses on eliminating SDC.

Symptom-based fault detectionmechanisms provide low-
cost solutions [10, 11]. These mechanisms treat anomalous
software behavior as symptoms of hardware faults and
detect them by placing very low-cost symptom monitors in
hardware or software. However, faults incurring SDC escape

Hindawi Publishing Corporation
International Journal of Aerospace Engineering
Volume 2016, Article ID 8213638, 10 pages
http://dx.doi.org/10.1155/2016/8213638

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205041628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 International Journal of Aerospace Engineering

The execution

Has right output?

Silent data
corruptionBenign

Crash

No

No

No

Yes

Yes

Yes

Hang

The result of
soft error

The execution
ends?

ends peacefully?

Figure 1: Classification of the result of soft error.

detection since they do not cause symptoms at all. To address
this limitation, software-based instruction duplication is a
possible alternative. With this approach, instructions are
duplicated and their results are validated within a single
thread of execution [12–15]. This solution has the advantage
of being purely software-based, requiring no specialized
hardware, and can achieve high coverage. However, the
overheads in terms of performance and power are quite high
since a large fraction of the program is replicated. Future
missionswill requiremuch greater computational power than
is available in today’s processors [4]; thus low-cost fault detec-
tion solution is desired by future aerospace-based computing.

To address the problem of detecting SDC, this paper pro-
poses an assertion-based detection mechanism. An assertion
is a statement with a predicate (boolean-valued function, a
true-false expression). If an assertion is found to be false at
run time, an assertion failure rises, which typically causes
the program to throw an assertion exception. Assertions
in this paper are based on program invariants [16], which
are properties that are true at a particular program point
or points. For example, 𝑥 = 2𝑦 is an invariant about the
variables 𝑥 and 𝑦, which represents that they satisfy a linear
relationship.This invariant is satisfied whenever the program
is executed normally but seldom satisfied if a soft error affects
the value of 𝑥 or 𝑦. Based on this principle, we design and
implement the system Radish which can harden the program
against soft errors. Radish can extract invariants from a C

program and insert invariant-based assertions back into the
source code. Once an assertion is found to be false, it suggests
that a soft error is detected.Then the execution is stopped and
a warning is given.

Radish merely adds a few lines of code to original source
code and thus it is easy to implement. Besides, it does not
need tomodify the underlying hardware and hardly increases
the complexity of the system. Furthermore, the overhead of
Radish turns out to be very low since the overhead of a single
assertion is low and the number of assertions in a program is
small.

To further increase the SDC coverage, we extend Radish
by incorporating the mechanism of software-based instruc-
tion duplication. The code sections that are not covered by
Radish are protected by deploying instruction duplication.
Experimental results show that Radish achieves high cov-
erage with low cost, and Radish D even achieves higher
coverage than that of Radish or pure instruction duplication.
The techniques of Radish and Radish D offer new solutions
to soft error mitigation.

2. Definitions and Models

This section describes important definitions andmodels used
in this paper.

Definition 1. A program is defined as ⟨𝐹, 𝐸, IN,OUT⟩. 𝐹
represents the functions in the program. 𝐸 is the set of edges

International Journal of Aerospace Engineering 3

Table 1: Relationships of invariants considered in this paper.

Category Expression

Unary 𝑥 = 𝑎; 𝑥 > 𝑎; 𝑥 < 𝑎; 𝑥%𝑎 = 0; 𝑥 ̸= 0;
𝑥 ∈ {𝑎, 𝑏, 𝑐} ; 𝑥[𝑘] < 𝑎; 𝑥[𝑘] > 𝑎

Binary
𝑦 = 𝑎𝑥 + 𝑏; 𝑥 < 𝑦; 𝑥 ̸= 𝑦; 𝑥 = 𝑦2;
𝑥[𝑘] < 𝑥[𝑘 + 1]; 𝑥[𝑘] > 𝑥[𝑘 + 1]; 𝑥[] ⊂ 𝑦[];
𝑥[𝑘] < 𝑦[𝑘]; 𝑦[𝑘] = 𝑎𝑥[𝑘] + 𝑏; 𝑥 ∈ 𝑦[]

Ternary
𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐; 𝑥 = 𝑦 ∧ 𝑧; 𝑥 = 𝑦 ∨ 𝑧;
𝑥 = Lshif t (𝑦, 𝑧) ; 𝑥 = Rshift (𝑦, 𝑧) ; 𝑥 = max (𝑦, 𝑧);
𝑥 = min (𝑦, 𝑧) ; 𝑥 = 𝑦 × 𝑧; 𝑥 = 𝑦 ÷ 𝑧

that denote dependencies between functions, s.t. 𝐸 = {𝑒𝑥𝑦 |
𝑓𝑥 call 𝑓𝑦, 𝑓𝑥 ∈ 𝐹, 𝑓𝑦 ∈ 𝐹}. IN and OUT denote the input
and the output. Soft computation [17] is not considered in this
paper; therefore, if 𝐹, 𝐸, and IN are determined, OUT can be
uniquely determined.

Definition 2. A function𝐹 is composed of a set of basic blocks
𝐵 and variables 𝑉; thus 𝐹 = {𝐵, 𝑉}. A basic block is a single
entrance, single exit sequence of instructions. For a single
instruction 𝑖𝑗, 𝑖𝑗 = ⟨𝜃, 𝑆, 𝐷⟩, where 𝑗 denotes the sequence
number of the dynamic instruction during the execution. 𝜃
denotes the program point, which equals the offset from the
start position of the assembly file. 𝑆 and 𝐷 denote the source
operands and the destination operands.

Definition 3. ∀𝑖𝑚 ∈ 𝑓𝑦, if ∃𝑖𝑘 ∈ 𝑓𝑥, 𝑒𝑦𝑥 ∈ 𝐸 ∧ 𝑖𝑘 ⋅ 𝑆 = 𝑖𝑚 ⋅ 𝐷,
also �∃𝑖𝑙 ∈ 𝑓𝑥, 𝑙 < 𝑘 ∧ 𝑖𝑙 ⋅ 𝐷 = 𝑖𝑘 ⋅ 𝑆, then 𝑖max{𝑚} in 𝑓𝑦 is
defined as the connector instruction. Literally, the connector
instruction transmits data from one function to another. The
variable that a connector instruction writes is defined as the
connector variable CV = {V | V ∈ 𝑖max{𝑚} ⋅ 𝐷}. Connector
variables include function argument variables, function
return variables, and global variables. By definition, the
connector instruction is the last to write a connector variable
in the function.

Definition 4. Execution profile is denoted by Γ, which is given
as a tuple Γ = ⟨𝜃, 𝑉, 𝐿⟩. Execution profile defines the values of
the variables at given program points. 𝜃 represents the given
program point. 𝐿 is the acquired value set of variables that
appears in 𝑉.

Definition 5. Invariant 𝑄 is defined as 𝑄 = ⟨𝜃, 𝜓, 𝑟⟩, where 𝜃
represents the program point, 𝜓 = ⟨V1, . . . , V𝑗, . . . , V𝑛⟩ is the
ordered set of variables, and 𝑟 represents the relationship of
variables that appear in 𝜓. 𝑟 ∈ 𝑅, where 𝑅 is the relationship
set considered in the paper, shown in Table 1. 𝑅 can be
categorized into unary, binary, and ternary.

For instance, suppose an invariant 𝑞1 = ⟨𝜃1, 𝜓1, 𝑟1⟩, where
𝜃1 = 0x10, 𝜓1 = ⟨tmp1, tmp2⟩, and 𝑟1 = {⟨𝑥, 𝑦⟩ | 𝑦 = 𝑥 + 1}.
𝑞1 represents that at the program point 0x10 the ordered set
⟨tmp1, tmp2⟩ ∈ 𝑟1, that is, tmp1, tmp2, satisfies the condition
of tmp2 = tmp1 + 1.

The fault model we assume is a single bit flip within the
register file. Most faults in other portions of the processor
eventually manifest as corrupted state in the register file [18].
Moreover, we assume that at most one fault occurs during a
program’s execution.

3. Radish

This paper implements Radish, a system which can harden
program against soft error. Radish enhances the resilience
of the program to soft error by inserting assertions to the
source code. The assertions are based on program invariants.
If the statement of an assertion is not satisfied during the
execution, the execution is stopped and a warning reports the
occurrence of soft error.

The input of Radish is C source file and the output is a
new C source file. The new source file can be compiled and
executed just as the original source file. They are identical in
functionality but vary in reliability.

This section introduces the workflow of Radish, which
can be divided into three phases, that is, preprocessing,
detecting, and selecting. Figure 2 shows the details of each
phase. In the preprocessing phase, we extract the execution
profiles Γ of the critical program points. Then Γ is used
to extract potential invariants in the detecting phase. After
that, invariants 𝑄pot are obtained and a fraction of them are
converted to assertions in the selecting phase. In the end,
hardened source code is outputted. We will describe each
phase below.

3.1. Preprocessing Phase. In the phase of preprocessing, we
find the critical program points and extract their execution
profiles.The profiles are used to extract invariants in the next
phase. Finally, assertions will be placed in those program
points to prevent faults frompropagating.The SDC coverages
vary due to the programpoints of assertions, and thereforewe
analyze the propagation of SDC and find the critical program
points for propagation. A fault may propagate through data
flow or control flow to incur SDC. Due to the distinction of
the two categories of propagation, we analyze and search for
their critical program points separately.

When a fault propagates throughdata flow, the same static
instructions are executed just as the fault-free execution, but
the data that the instructions read or write are corrupted. To
incur SDC, the corrupted data need to be transmitted to other
functions, especially the output function. Only connector
instructions can perform this operation; thus they must be
executed and the data they transmit are corrupted. This
makes the connector instructions efficient for fault detection
and therefore they are selected as the critical program points
against data flow propagation.

Next we discuss fault propagation in control flow. The
compare instruction performs a comparison between two
values and the result of the comparison impacts the bits of
the flag register, which determines the consequent jump per-
formed by a branch instruction. Propagation through control
flowmeans that an erroneous jump is performed by a branch
instruction. Assume that in the fault-free execution 𝑖𝑘 is a
branch instruction and the next instruction is 𝑖𝑘+1 ∈ 𝑏𝑢, which

4 International Journal of Aerospace Engineering

Source
code

Hardened
source code

Assertions

Selecting phase

Detecting phase
Preprocessing
phase

Qass

Θcri Γ V𝜃 Qpot

N(P1𝜃)

N(P2𝜃)

N(P3𝜃

P
1
𝜃

P
2
𝜃

P
3
𝜃)

Figure 2: The workflow of Radish.

means 𝑖𝑘 chooses 𝑏𝑢 as the next basic block.When the flag reg-
ister is corrupted in the presence of soft error, then 𝑖𝑘+1 ∈ 𝑏𝑤,
whichmeans 𝑖𝑘 chooses the erroneous branch 𝑏𝑤 instead of 𝑏𝑢.
To avoid this, we should check if the right branch is taken after
the execution of 𝑖𝑘.Therefore branch instructions are selected
as the critical program points of control flow propagation.

According to the analysis above, the critical program
points of data flow and control flow propagation refer to con-
nector instructions and branch instructions. It takes two steps
to extract the execution profiles of the critical programpoints.

Step 1. We compile the source code and translate it into
assembly file and then locate connector instructions and
branch instructions in the assembly file.Their programpoints
are recorded and added to the program point set Θcri.

Step 2. The execution profile is acquired by using Kvasir [16].
Kvasir executes C and C++ programs and creates data trace
files of variables and their values by examining the operation
of the binary at runtime. Using Kvasir makes it possible
to interrupt program’s execution and read the values of all
variables manifest at the program points of interest. Once it
finishes executing, we get the profiles Γ at the target program
points in Θcri.

3.2. Detecting Phase. In the detecting phase, the ordered set
of variables and the corresponding ordered set of values are
generated according to the execution profiles Γ. We check if
the values satisfy any relationship of 𝑅 listed in Table 1. The
detecting phase has 4 steps in total.

Step 1. For each program point 𝜃 of Θcri, we get the set of
accessible variables 𝑉𝜃 from the execution profile Γ. Then the
unary, binary, and ternary ordered sets 𝑃1𝜃 , 𝑃2𝜃 , and 𝑃3𝜃 are
created.The superscript digits refer to the number of variables
of the ordered set. For example, 𝑃2𝜃 is an arrangement of two
variables in 𝑉𝜃; that is, 𝑃2𝜃 (V𝑘, V𝑗) = {⟨V𝑘, V𝑗⟩ | V𝑘 ∈ 𝑉𝜃 ∧ V𝑗 ∈
𝑉𝜃}.

Step 2. Find the corresponding values of the variables appear-
ing in𝑃1𝜃 ,𝑃

2
𝜃 ,𝑃
3
𝜃 and generate the ordered sets of value𝑁(𝑃1𝜃),

𝑁(𝑃2𝜃),𝑁(𝑃3𝜃). For example,𝑁(𝑃2𝜃 (V𝑘, V𝑗)) is the ordered value

set of 𝑃2𝜃 (V𝑘, V𝑗). 𝑁(𝑃2𝜃 (V𝑘, V𝑗)) = {⟨𝑙𝑢, 𝑙𝑤⟩ | ⟨𝜃, V𝑘, 𝑙𝑢⟩ ∈
Γ ∧ ⟨𝜃, V𝑗, 𝑙𝑤⟩ ∈ Γ}.

Step 3. For the relationships that have undetermined param-
eters, we use a part of the ordered set of values to calculate
those parameters. Thus the entire expression is determined.

Step 4. Test if each element of the ordered set of values
satisfies the condition of the relationship. If so, then create a
new invariant and put it into the potential invariant set 𝑄pot.

Take a binary relationship 𝑟lin = {⟨𝑥, 𝑦⟩ | 𝑦 = 𝑎𝑥 + 𝑏} as
example. We shall show each step of detecting phase. Since it
is a binary relationship, only the binary ordered sets of𝑃2𝜃 and
𝑁(𝑃2𝜃) are considered in this example.

In the first step, we get 𝑉𝜃 = {V𝑘 | ∃𝑙, ⟨𝜃, V𝑘, 𝑙⟩ ∈ Γ} by
searching the execution profile Γ.Then𝑃2𝜃 (V𝑘, V𝑗) = {⟨V𝑘, V𝑗⟩ |
V𝑘 ∈ 𝑉𝜃 ∧ V𝑗 ∈ 𝑉𝜃} is obtained by creating the arrangement of
every two variables in 𝑉𝜃.

In the second step, 𝑁(𝑃2𝜃 (V𝑘, V𝑗)) = {⟨𝑙𝑢, 𝑙𝑤⟩ | ⟨𝜃, V𝑘, 𝑙𝑢⟩ ∈
Γ ∧ ⟨𝜃, V𝑗, 𝑙𝑤⟩ ∈ Γ} is obtained by finding the values of V𝑘 and
V𝑗 in the execution profile Γ. There may be many value pairs
of V𝑘 and V𝑗 because certain code sections can be invoked for
many times in a single execution and each invoking produces
one value instance.

In the third step, we calculate the parameters 𝑎, 𝑏 in 𝑟lin.
To this end,we need to use at least 2 elements of𝑁(𝑃2𝜃 (V𝑘, V𝑗)).
Assuming the two elements are ⟨𝑙1, 𝑙2⟩ and ⟨𝑙3, 𝑙4⟩, it could be
easily obtained that 𝑎 = (𝑙4 − 𝑙2)/(𝑙3 − 𝑙1) and 𝑏 = (𝑙2𝑙3 −
𝑙1𝑙4)/(𝑙3 − 𝑙1).

In the last step, all elements in 𝑁(𝑃2𝜃 (V𝑘, V𝑗)) are checked
whether they satisfy 𝑟lin = {⟨𝑥, 𝑦⟩ | 𝑦 = ((𝑙4 − 𝑙2)/(𝑙3 − 𝑙1))𝑥 +
(𝑙2𝑙3 − 𝑙1𝑙4)/(𝑙3 − 𝑙1)}. If all of them pass this validation, the
invariant ⟨𝜃, ⟨V𝑘, V𝑗⟩, 𝑟lin⟩holds and it is added to the potential
invariant set 𝑄pot.

3.3. Selecting Phase. It is often observed that the number of
elements of the potential invariant set 𝑄pot is very large. If all
of them are converted into assertions and inserted into source
file, it will incur very high performance overhead. In the
selecting phase, proper invariants are selected according to
their capability of detecting SDC. Heuristics about selection

International Journal of Aerospace Engineering 5

criteria are formulated on the basis of propagation of SDC.
These heuristics are generic and can be applied to any
invariants. We list the heuristics first and then describe the
selecting steps.

Heuristic 1. There are certain types of variables that should be
monitored at each target program point.

A fraction of variables are capable of telling if the
execution is going well, and thus monitoring these variables
is able to detect SDC. The target program point set Θcri can
be categorized into program points of connector instructions
and branch instructions. At the program points of connector
instructions, it is the connector variables that should be
paid special attentions to since they reflect whether results
of functions are correct. At the program points of branch
instructions, branch-controlling variables, which appear in
the statement of if, while, or for structure, reflect the status
of these structures and thus should be noticed. Therefore for
all target program points we find certain variables tomonitor.

Heuristic 2. The likelihood of detecting SDC increases if the
number of valid values defined by an assertion decreases.

Invalid values cannot pass the examination of assertions
in the presence of soft error. Therefore having more invalid
values (less valid values) means the likelihood of detecting
SDC increases. The number of valid values of an invariant
is determined by its relationship. Equality relationship, using
“=” as operator, only has one valid value, then come inclusion
(∈, ⊆), range (>, <), and inequality relationship (̸=) in order of
ascending number of valid values.

Heuristic 3. The likelihood of detecting SDC increases if
more variables are included by an assertion.

The more the variables appearing in an assertion, the
more the variables it can monitor. If any of the variables
gets corrupted due to soft error, the assertion will be able to
catch the error. Thus having more variables in an assertion
leads to higher coverage of SDC. So far, the largest number of
variables is 3, which refers to ternary relationships.

Utilizing these heuristics, we are able to reduce the
number of invariants and obtain more effective assertions.
The selecting phase has three steps.

Step 1. The invariants which contain connector variables at
the program points of connector instructions or branch-
controlling variables at the program points of branch instruc-
tions are selected based on Heuristic 1.

Step 2. The invariants with the relationship that has fewer
valid values are picked up according to Heuristic 2.

Step 3. The invariants which contain the largest number of
variables are selected due to Heuristic 3.

The selecting process stops until there is only one invari-
ant left or all the steps have been performed.Then we convert
the chosen invariants into assertions, which is basically a
string conversion problem. For brevity’s sake, we do not talk
about it in this paper. Finally we include the assertion header
file at the beginning of the new source file to make sure
assertions can work.

4. Radish_D

The assertions generated by Radish cannot fully monitor all
the variables and program points; thus certain faults might
propagate through unprotected code sections. To further
increase the coverage of SDC, we introduce software-based
instruction duplication mechanism to protect the code
sections that are not covered by Radish.

This paper utilizes instruction duplication mechanism of
SWIFT [15] for comparison and also for our own duplication
in Radish D. SWIFT duplicates all computation instructions
along the path of replication and the replica instructions use
different registers and different memory locations. At certain
synchronization points, comparison instructions are inserted
to check if the original instructions and their replica have
identical values.

Rather than deploying full instruction duplication mech-
anism of SWIFT, Radish D applies selective instruction
duplication mechanism. Because a portion of instructions
have been protected by assertions, we only need to duplicate
the others.

Before deploying duplications, we need to determine
which variables are safe under the protection of assertions. An
assertion is capable of protecting the variables which appear
in its statement. However, the protection does not last for the
entire lifetime of those variables. Only the fraction from the
beginning of the local function till the variable’s host assertion
is considered safe, since the variable’s value is checked during
the execution of the assertion.

We partition each variable’s lifetime by assertions and
identify the safe periods. Then duplications are deployed
in the instruction level. The targets of duplications are the
instructionswhich do not contain a variable in the safe period
as operand. A replica instruction is created by copying the
opcode and operands of the original instruction.The destina-
tion operand is changed into an unused register, the copy of
the original destination operand. Next we decide if there is a
need to change the source operands of the replica instruction.
If there has already been a copy of the source operand, which
means this source operandwas some instruction’s destination
operand and thus got a copy, we replace the replica instruc-
tion’s source operand with its copy. The replica instruction
is inserted before the original instruction in the same basic
block.

Besides, store, branch, and call instructions are chosen as
the synchronization points. If any source operand of these
instructions has a copy, we compare its value with that of its
copy by inserting a compare instruction. According to the
type of the operand (int or float), the compare instruction can
be either icmp instruction or fcmp instruction.After the com-
pare instruction, a branch instruction using the predicate of
neq is inserted into the code. If the two values show a discrep-
ancy, it will jump to a function called faultDetected; if other-
wise, it will continue to execute the previous store, branch, or
call instruction. The function of faultDetected outputs error
messages and returns with an exit code, whichwill inform the
system of soft error and end the execution.

We use an example to show the distinction between
our method and full instruction duplication mechanism in

6 International Journal of Aerospace Engineering

(a) Original assembly code

(c) Assembly code of Radish_D

(b) Assembly code after full instruction duplication
i1: R3 = xor R1, R2
i2: R5 = add R4, R2
i3: R6 = icmp eq R3, R5
i4: br R6 label b2

i1: R3 = xor R1, R2
i2: R3

󳰀
= xor R1󳰀, R2󳰀

i3: R5 = add R4, R2
i4: R5

󳰀
= add R4󳰀, R2󳰀

i5: R7 = icmp neq R3, R3󳰀

i6: br R7 label faultDetected
i7: R8 = icmp neq R5, R5󳰀

i8: br R8 label faultDetected
i9: R6 = icmp eq R3, R5
i10 : br R6 label b2

i2: R5 = add R4, R2

i6: R6 = icmp eq R3, R5
i7: br R6 label b2

i1: R3 = xor R1, R2

i3: R5
󳰀
= add R4󳰀, R2󳰀

i5: br R7 labeL faultDetected
i4: R7 = icmp neq R5, R5󳰀

assert(R1 > R3)

Figure 3: A sample assembly code before and after transformation of full instruction duplication and Radish D.

Figure 3. For consistency, we make use of the LLVM [19]
assembly language to present the assembly code. Figure 3(a)
shows the original assembly code and Figure 3(b) shows the
assembly code after full instruction duplication. It can be
found in Figure 3(b) that 𝑅3󸀠 is the replica of 𝑅3 and the
duplication is accomplished by the instruction 𝑖2. Similarly,
𝑅5󸀠 is the replica of 𝑅5 through the duplication by 𝑖4. 𝑖9 is the
synchronization point and the source operands of 𝑖9, 𝑅3 and
𝑅5, need to be examined. 𝑖5 and 𝑖7 compare 𝑅3 and 𝑅5 with
their replicas separately. If the values of 𝑅3 and 𝑅3󸀠 are not
equal, 𝑖6 will call faultDetected to report a soft error.

The assembly code generated by Radish D is shown
in Figure 3(c). Assume that we have already obtained an
assertion about𝑅1 and𝑅3 by utilizingRadish, which is shown
in the line of code “assert(𝑅1 > 𝑅3).” Due to the assertion,𝑅1
and𝑅3 are considered safe during the execution of this exam-
ple. 𝑅1󸀠 and 𝑅3󸀠 are no longer necessary and the instructions
used for their duplication are eliminated. Variables except 𝑅1
and 𝑅3 still need to be duplicated and checked; thus 𝑅5 is
duplicated by 𝑖3 and checked at the synchronization point 𝑖6.
The efficiency of Radish D and full instruction duplication
mechanism will be exploited in the next section.

5. Experiment

This paper applies fault injection experiments to validate
the effectiveness of Radish and Radish D. The fault injec-
tion experiment is performed on the original executive
first. The hardened executives using Radish, Radish D, and

full instruction duplication are targeted subsequently. We
compare the results of the fault injection experiments and
calculate the SDC coverage and performance overhead. To
ensure a fair comparison among these mechanisms, we use
a metric called the SDC detection efficiency, which is defined
in prior work [9] as the ratio between SDC coverage and
overhead for a detection mechanism.

The platform for validation is Ubuntu 14.04 (AMD64
architecture). LLFI [20] is applied to perform fault injections.
LLFI is an LLVM-based fault injection tool.The source code is
translated into an intermediate representation (IR) and the IR
code is then injected. The faults can be injected into specific
program points, and the effect can be easily tracked back
to the source code. LLFI is configured to inject destination
register. In a single fault injection, LLFI randomly picks up
one instruction and injects 1 soft error to the destination
operand. One fault injection experiment continues until the
fault injection has been repeated for 1000 times. The injected
faults may affect data flow or control flow. We take the
following LLVM IR code to explain the effect on control flow:

(1) %judge1=icmp ne i32 %1, %2

(2) br i1 %judge1, label %BB1, label %BB2.

%judge1 determines the outcome of branch. If %judege1
is injected, the branch instruction may choose the wrong
branch and thus affect control flow. The mechanism of full
instruction duplication is implemented by developing a new
pass under LLVM infrastructure. The pass is also used by

International Journal of Aerospace Engineering 7

qsort is cubic rad2deg crc bitstrngqrt

Duplication
Radish
Radish_D

0

20

40

60

80

120

100

Pe
rfo

rm
an

ce
 o

ve
rh

ea
d

(%
)

Figure 4: The comparison of performance overheads among full instruction duplication, Radish, and Radish D.

Radish D for the operation of instruction duplication by
modifying certain conditions for duplication.

The programs used for evaluation are from MiBench
benchmark suite [21]. These programs are qsort (which
performs the algorithm of quick sort), isqrt (which is base
two analogue of the square root algorithm), cubic (which
solves a cubic polynomial), rad2deg (which converts between
radians and degrees), crc (which computes 32-bit crc to detect
accidental changes to raw data), and bitstrng (which prints bit
pattern of bytes formatted to string). These are C programs
consisting of a few hundred lines of C code. We use 25 inputs
to extract invariants and randomly choose one input for the
injection.

5.1. Comparison between Radish and Full Instruction Dupli-
cation. Figure 4 shows the performance overheads of Radish
and full instruction duplication.We use the execution time of
the original program as baseline for comparison. Compared
with the baseline, the average overhead incurred by Radish is
30.4%, and the overhead incurred by full instruction dupli-
cation is 52.8%. The overhead of full instruction duplication
mechanism is 22.4% higher than the overhead of Radish for
the studied programs.

Figure 5 shows the SDC coverages. The average SDC
coverage of Radish is 77.1% and that of full instruction dupli-
cation is 84.3%.The average SDC coverage of full instruction
duplication is 7.2% higher than that of Radish. Among most
of the benchmarks, the SDC coverages of full instruction
duplication and Radish are very close.

Full instruction duplication does not achieve nearly 100%
coverage since it does not check the result of store and branch
instruction. For example, in Figure 3(b) which denotes the
full instruction duplication, if 𝑅6 in 𝑖9 is injected, 𝑖10 is
affected andmay choose the wrong branch. SWIFT [15] raises
the coverage to nearly 100% since it assumes that the hardware
applies ECC and it adds control flow checking mechanism.
The SDC detection efficiency can be observed in Figure 6.
Radish has higher SDCdetection efficiency, which is 1.6 times
as much as that of full instruction duplication.This is because
the mechanism of full instruction duplication protects all
instructions executed, which incurs high SDC coverage with

very high overhead. However, Radish obtains relatively high
SDC coverage with much lower overhead. Radish achieves
this by curbing the number of program points that generate
assertions. Further, the execution cost of assertions is rela-
tively low and assertions have good SDC coverage since they
are seldom satisfied when soft errors occur.

5.2. The Experimental Results of Radish D. The average SDC
coverage of Radish D is 92.5%, which is 8.2% higher than
that of full instruction duplication and 15.5% higher than that
of Radish. It can be validated that instruction duplication of
Radish D protects unsafe code sections that are not covered
by assertions. Radish D may generate assertions that check
the variable which is stored in the memory after the store
instruction (see Heuristic 1). Moreover, at the program points
of branch instructions, branch-controlling variables are
checked. Therefore the assertions of Radish D catch some of
faults that escape the detection of duplicationmechanism and
the coverage of Radish D is higher than that of full instruc-
tion duplication.

The average overhead of Radish D is 76.3%, lower than
the sum of the overhead of full instruction duplication and
Radish, because we eliminate the duplication deployed to the
instructions that have already been protected by assertions.

The average SDC detection efficiency of Radish D is
lower than that of full instruction duplication or Radish.
For Radish D, there are overlapping soft errors that can be
detected by both instruction duplication and assertions. To
these soft errors, the overhead increases by deploying instruc-
tion duplication but the SDC coverage does not increase.The
SDC detection efficiency is the ratio between SDC coverage
and overhead, and thus it is lowered.

5.3. False Positives of Invariants. A false positive for an input
can occur when the values at the assertion points for this
input do not satisfy the condition of the assertion learned
from the training inputs. We use 25 inputs for training and
100 inputs for testing. No faults are injected in these runs. We
test all the programs that were used to evaluate SDC coverage
in the fault injection experiment. The result shows that the
averaged false positive rate of the studied programs is 4.8%.

8 International Journal of Aerospace Engineering

qsort is cubic rad2deg crc bitstrngqrt

Duplication
Radish
Radish_D

0

10

20

30

40

50

60

70

80

90

100

SD
C

co
ve

ra
ge

 (%
)

Figure 5: The comparison of SDC coverages among full instruction duplication, Radish, and Radish D.

qsort is cubic rad2deg crc bitstrngqrt

Duplication
Radish
Radish_D

0

0.5

1

1.5

2

2.5

3

3.5

4

SD
C

de
te

ct
io

n
effi

ci
en

cy

Figure 6: The comparison of SDC detection efficiencies among full instruction duplication, Radish, and Radish D.

We also conduct the experiment to exam the effect of
training set size. The result of qsort is shown in Figure 7. The
training set consists of 25, 50, and 75 inputs and false positives
are computed across 100 inputs.

The false positive rate decreases from 5% to 3% as the
training set size is increased from 25 to 50 and to 2% for
75 inputs. The SDC coverage also decreases as the training
set increases from 25 to 75 inputs. The impact on both SDC
coverage and false positive rate from increasing the training
set size is significant. Hence we should choose the training set
size according to the user target. If user specifies the bound
of SDC coverage and overhead by turning false positive rate
into overhead we can choose a training set size to achieve the
target.

Besides, reexecution can reduce the overhead incurred
by fault positive. When an assertion raises an alarm, we can
determine if it is a false positive by reexecuting it. If the
assertion raises an alarm again, it is a false positive. In this
case, the alarm can be ignored, and the program can continue.

From the discussion above, it can be concluded that
Radish D has higher SDC coverage than that of Radish or full
instruction duplication. But its overhead is also higher, which
suggests that Radish D should be used in the situation where

SDC coverage is considered to have more priority than over-
head. Further, the SDC detection efficiency of Radish is far
higher than that of Radish D or full instruction duplication,
which means it is more cost-effective. But Radish may incur
overhead due to false positives. Users can choose Radish
or Radish D according to their consideration of tradeoff
between the SDC coverage and performance overhead.

6. Related Work

Prior research [8, 22, 23] applies invariants with a single
variable and most of the invariants are based on bounded
range. We apply invariants with more variables, which can
achieve better coverage in many occasions. For example, we
can always extract an invariant 𝑛 − 𝑘 + 1 = 0 from a typical
loop structure shown as follows:

for (𝑘 = 1; 𝑘 <= 𝑛; 𝑘 + +)

{

⋅ ⋅ ⋅

}

← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑔 𝑖𝑛V𝑎𝑟𝑖𝑎𝑛𝑡 𝑓𝑟𝑜𝑚 ℎ𝑒𝑟𝑒

International Journal of Aerospace Engineering 9

0.72

0.73

0.74

0.740.75

0.75

0.76

0.77

0.78
0.78

SD
C

co
ve

ra
ge

25 50 75

Training set size

SDC coverage
False positive

0.06

0.05

0.05
0.04

0.03

0.03

0.02

0.02
0.01

0

Fa
lse

 p
os

iti
ve

 ra
te

Figure 7: The SDC coverage and false positive rate for varied training set sizes.

It is found that assert(𝑛 − 𝑘 + 1 = 0) is often better than the
bounded-range-based invariant assert(𝑘min ≤ 𝑘 ≤ 𝑘max) at
detecting errors since assert(𝑛 − 𝑘 + 1 = 0) checks both 𝑛 and
𝑘 while assert(𝑘min ≤ 𝑘 ≤ 𝑘max) only checks 𝑘.

A typical criterion for selection of detectors defined in
[22], the tightness, is the probability that the detector detects
an error given that there is an error in the value of the variable
that it checks. The notion of tightness is based on the value
of a single variable. The invariant in this paper may include
2 or 3 variables and the notion of tightness cannot be used
to describe an invariant with more than one variable. For
example, if 𝑥 is flipped in the invariant 𝑥 < 𝑦, since there are
multiple possible values of𝑦, it cannot be decidedwhether the
invariant is still satisfied and thus the tightness cannot be cal-
culated. Since the tightness cannot be used, we apply certain
heuristics to choose invariants and it is proved to be effective.

7. Conclusion

To address the problem of detecting SDC, we propose
an approach which applies invariant-based assertions and
implement a system called Radish. Radish neither requires
any hardware modifications to add error detection capability
to the original system, nor needs to acknowledge the seman-
tics of the program and thus possesses a good scalability.
Experiments show that Radish achieves high SDC coverage
with very low overhead.

Furthermore, we propose Radish D by adding instruc-
tion duplication to the unsafe code sections which are
not covered by assertions. Radish D achieves higher SDC
coverage than that of Radish or full instruction duplication
mechanism. Both Radish and Radish D offer feasible alter-
natives for soft error mitigation.

Competing Interests

The authors declare no conflict of interests regarding the
publication of this paper.

Acknowledgments

This work was supported by the National Basic Research
Program of China (“973” Project).

References

[1] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls
in fault-injection based comparison of program susceptibility
to soft errors,” in Proceedings of the 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN ’15), pp. 319–330, IEEE, Rio de Janeiro, Brazil, June 2015.

[2] A. O. Daniel, L. P. Laércio, S. Thiago et al., “Evaluation
and mitigation of radiation-induced soft errors in graphics
processing units,” IEEE Transactions on Computers, vol. 65, no.
3, pp. 791–804, 2016.

[3] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error
problem: an architectural perspective,” in Proceedings of the
11th International Symposium on High-Performance Computer
Architecture (HPCA ’05), pp. 243–247, San Francisco, Calif,
USA, February 2005.

[4] D. Binder, E. C. Smith, and A. B. Holman, “Satellite anomalies
from galactic cosmic rays,” IEEE Transactions on Nuclear
Science, vol. 22, no. 6, pp. 2675–2680, 1975.

[5] J. Olsen, P. E. Becher, P. B. Fynbo, P. Raaby, and J. Schultz,
“Neutron-induced single event upsets in static RAMS observed
at 10 km flight altitude,” IEEE Transactions on Nuclear Science,
vol. 40, no. 2, pp. 74–77, 1993.

[6] J. P. Walters, K. M. Zick, and M. French, “A practical char-
acterization of a NASA SpaceCube application through fault
emulation and laser testing,” in Proceedings of the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN ’13), pp. 1–8, June 2013.

[7] S. Mittal and J. S. Vetter, “A survey of techniques for modeling
and improving reliability of computing systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 27, no. 4, pp.
1226–1238, 2016.

[8] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee,
“Perturbation-based fault screening,” in Proceedings of the IEEE
13th International Symposium on High Performance Computer
Architecture, pp. 169–180, Scottsdale, Ariz, USA, February 2007.

[9] Q. Lu, K. Pattabiraman, M. S. Gupta et al., “SDCTune: a
model for predicting the SDC proneness of an application
for configurable protection,” in Proceedings of the Compilers,
Architecture and Synthesis for Embedded Systems, pp. 1–10, Uttar
Pradesh, India, 2014.

[10] N. J. Wang and S. J. Patel, “ReStore: symptom-based soft error
detection in microprocessors,” IEEE Transactions on Depend-
able and Secure Computing, vol. 3, no. 3, pp. 188–201, 2006.

10 International Journal of Aerospace Engineering

[11] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve,
and Y. Zhou, “Understanding the propagation of hard errors
to software and implications for resilient system design,” ACM
SIGARCH Computer Architecture News, vol. 36, no. 1, pp. 265–
276, 2008.

[12] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection
by duplicated instructions in super-scalar processors,” IEEE
Transactions on Reliability, vol. 51, no. 1, pp. 63–75, 2002.

[13] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel,
“Exploiting program-level masking and error propagation for
constrained reliability optimization,” in Proceedings of the 50th
Annual Design Automation Conference (DAC ’13), pp. 1–17,
Austin, Tex, USA, June 2013.

[14] S. Rehman, M. Shafique, P. V. Aceituno, F. Kriebel, J.-J. Chen,
and J. Henkel, “Leveraging variable function resilience for selec-
tive software reliability on unreliable hardware,” in Proceedings
of the 16th Design, Automation and Test in Europe Conference
and Exhibition (DATE ’13), pp. 1759–1764, Grenoble, France,
March 2013.

[15] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.
I. August, “SWIFT: software implemented fault tolerance,” in
Proceedings of the International Symposium on Code Generation
and Optimization, pp. 243–254, IEEE Computer Society, San
Jose, Calif, USA, 2005.

[16] M. D. Ernst, J. H. Perkins, P. J. Guo et al., “The Daikon system
for dynamic detection of likely invariants,” Science of Computer
Programming, vol. 69, no. 1–3, pp. 35–45, 2007.

[17] A. Thomas and K. Pattabiraman, “Error detector placement for
soft computation,” in Proceedings of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN ’13), pp. 1–12, IEEE Computer Society, June 2013.

[18] F. Shuguang, G. Shantanu, A. Amin et al., “Shoestring: proba-
bilistic soft error reliability on the cheap,” in Proceedings of the
ASPLOS, pp. 385–396, Pittsburgh, Pa, USA, 2010.

[19] C. Lattner and V. Adve, “LLVM: a compilation framework for
lifelong program analysis & transformation,” in Proceedings of
the International Symposium onCode Generation andOptimiza-
tion (CGO ’04), pp. 75–86, San Jose, Calif, USA, March 2004.

[20] A. Thomas and K. Pattabiraman, “LLFI: an intermediate code
level fault injector for soft computing applications,” in Proceed-
ings of the Workshop on Silicon Errors in Logic System Effects
(SELSE ’13), pp. 1–8, Palo Alto, Calif, USA, 2013.

[21] M. R.Guthaus, J. S. Ringenberg,D. Ernst et al., “MiBench: a free,
commercially representative embedded benchmark suite,” in
Proceedings of the Workload Characterization, pp. 3–14, Austin,
Tex, USA, 2001.

[22] K. Pattabiraman, S. Giacinto, C. Daniel et al., “Dynamic
derivation of application-specific error detectors and their
implementation in hardware,” inProceedings of the 6th European
Dependable Computing Conference (EDCC ’06), pp. 97–108,
Coimbra, Portugal, October 2006.

[23] S. K. Sahoo, M.-L. Li, P. Ramachandran, S. V. Adve, V. S.
Adve, and Y. Zhou, “Using likely program invariants to detect
hardware errors,” in Proceedings of the 38th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN ’08), pp. 70–79, IEEE Computer Society, Anchorage,
Alaska, USA, June 2008.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

