4,408 research outputs found

    Origin of the increased velocities of domain wall motions in soft magnetic thin-film nanostripes beyond the velocity-breakdown regime

    Get PDF
    It is known that oscillatory domain-wall (DW) motions in soft magnetic thin-film nanostripes above the Walker critical field lead to a remarkable reduction in the average DW velocities. In a much-higher-field region beyond the velocity-breakdown regime, however, the DW velocities have been found to increase in response to a further increase of the applied field. We report on the physical origin and detailed mechanism of this unexpected behavior. We associate the mechanism with the serial dynamic processes of the nucleation of vortex-antivortex (V-AV) pairs inside the stripe or at its edges, the non-linear gyrotropic motions of Vs and AVs, and their annihilation process. The present results imply that a two-dimensional soliton model is required for adequate interpretation of DW motions in the linear- and oscillatory-DW-motion regimes as well as in the beyond-velocity-breakdown regime.Comment: 16 pages, 3 figure

    Atypical vitelliform macular dystrophy misdiagnosed as chronic central serous chorioretinopathy: case reports

    Get PDF
    BACKGROUND: To report two cases of atypical vitelliform macular dystrophy misdiagnosed as chronic central serous chorioretinopathy. CASE PRESENTATION: Two patients with incidentally discovered abnormalities of the retina without specific symptoms were referred to our hospital for consultation. Bilateral macula atrophic lesions were observed and optical coherence tomography revealed serous retinal detachment in the macula. Fluorescein angiography showed multiple leakages around the central hypofluorescent area and indocyanine green angiography showed partially dilated choroidal vessels. Fundus autofluorescence (FAF) showed a decreasing pattern of autofluorescence in the subretinal fluid area, and increasing autofluorescence at the border of the serous retinal detachment. Both patients were diagnosed with chronic central serous chorioretinopathy. Photodynamic therapy and intravitreal bevacizumab injection were administered for engorged choroidal vessels during follow-up, but neither patient showed improvement in symptoms or ophthalmologic findings. Based on re-evaluation by fundus photography, optical coherence tomography, fluorescein angiography, and comparison of the results of FAF with the first visit, vitelliform macular dystrophy was suspected and a definite diagnosis was made by electrooculography and genetic testing. CONCLUSION: In patients with continuous serous retinal detachment without response to photodynamic therapy or intravitreal bevacizumab injection, careful fundus exam and FAF can be used to diagnose atypical vitelliform macular dystrophy

    Reliable low-power control of ultrafast vortex-core switching with the selectivity in an array of vortex states by in-plane circular-rotational magnetic fields and spin-polarized currents

    Get PDF
    The authors investigated the technological utility of counterclockwise (CCW) and clockwise (CW) circular-rotating fields (HCCW and HCW) and spin-polarized currents with an angular frequency ??H close to the vortex eigenfrequency ??D, for the reliable, low-power, and selective switching of the bistate magnetization (M) orientations of a vortex core (VC) in an array of soft magnetic nanoelements. CCW and CW circular gyrotropic motions in response to HCCW and HCW, respectively, show remarkably contrasting resonant behaviors, (i.e., extremely large-amplitude resonance versus small-amplitude nonresonance), depending on the M orientation of a given VC. Owing to this asymmetric resonance characteristics, the HCCW (HCW) with ??H ??? ??D can be used to effectively switch only the up (down) core to its downward (upward) M orientation, selectively, by sufficiently low field (???10 Oe) and current density (??? 107 A cm2). This work provides a reliable, low power, effective means of information storage, information recording, and information readout in vortex-based random access memory, simply called VRAM.open906

    The Safety and Efficacy of Transconjunctival Sutureless 23-gauge Vitrectomy

    Get PDF
    PURPOSE: To evaluate the efficacy and safety of vitreoretinal surgery using a 23-gauge transconjunctival sutureless vitrectomy (TSV) system for various vitreoretinal diseases. METHODS: A retrospective, consecutive, interventional case series was performed for 40 eyes of 40 patients. The patients underwent vitreoretinal procedures using the 23-gauge TSV system, including idiopathic epiretinal membrane (n=7), vitreous hemorrhage (n=11), diabetic macular edema (n=10), macular hole (n=5), vitreomacular traction syndrome (n=5), diabetic tractional retinal detachment (n=1), and rhegmatogenous retinal detachment (n=1). Best corrected visual acuity (BCVA), intraocular pressure (IOP), and intra- and post-operative complications were evaluated. RESULTS: Intraoperative suture placement was necessary in 3 eyes (7.5%). The median BCVA improved from 20/400 (LogMAR, 1.21+/-0.63) to 20/140 (LogMAR, 0.83+/-0.48) at 1 week (p=0.003), 20/100 (LogMAR, 0.85+/-0.65) at 1 month (p=0.002), 20/100 (LogMAR, 0.73+/-0.6) at 3 months (p=0.001). In 1 eye, IOP was 5 mmHg at 2 hours and 4 mmHg at 5 hours, but none of the eyes showed hypotony after 1 postoperative day. No serous postoperative complications were observed during a mean follow-up of 8.4+/-3.4 months (range 3-13 months) CONCLUSIONS: The 23-gauge TSV system shows promise as an effective and safe technique for a variety of vitreoretinal procedures. It appears to be a less traumatic, more convenient alternative to 20-gauge vitrectomy in some indications

    Vortex-antivortex pair driven magnetization dynamics studied by micromagnetic simulations

    Get PDF
    The magnetization dynamics approaching an equilibrium vortex state from an initial nonequilibrium state under zero magnetic field in a circular shaped Fe disk with thickness of 5 nm and a diameter of 1200 nm were studied. Starting from the initial random configuration of in-plane magnetizations, a great number of vortex and antivortex pairs energetically favorable to form were generated at a lot of nucleation sites. It was found that the sites propagated and then were annihilated by their attractive interactions during the relaxation dynamic process. The study shows that temporal magnetization evolutions can be dominated by the nucleation of the vortex and antivortex pairs, followed by their propagation and annihilation.open222

    Understanding eigenfrequency shifts observed in vortex gyrotropic motions in a magnetic nanodot driven by spin-polarized out-of-plane dccurrent

    Get PDF
    We observed sizable eigenfrequency shifts in spin-polarized dc-current-driven vortex gyrotropic motions in a soft magnetic nanodot, and clarified the underlying physics through micromagnetic numerical calculations. It was found that the vortex eigenfrequency is changed to higher (lower) values with increasing Oersted field (OH) strength associated with the out-of-plane dc current for the vortex chirality parallel (antiparallel) to the rotation sense of the OH circumferential in-plane orientation. The eigenfrequency shift was found to be linearly proportional to the current density j0 in the linear regime as in ?? D ≃?? j0 / G, where G is the gyrovector constant and is a positive constant, e.g., 1.9?? 10-8 erg/A for a model Permalloy dot of 300 nm diameter and 20 nm thickness. This behavior originates from the sizable contribution of the OH to the effective potential energy of a displaced vortex core in the gyrotropic motion. The present results reveal that D, an intrinsic dynamic characteristic of a given nanodot vortex state, is controllable by changes in both the density and direction of spin-polarized out-of-plane dc currents.open191
    corecore