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Magnetization dynamics approaching an equilibrium vortex state from an initial nonequilibrium
state under zero magnetic field has been studied in a circular-shaped Fe disk with a thickness of
5 nm and a diameter of 1200 nm using micromagnetic simulations. Upon starting from the initial

random configuration of in-plane magnetizations, a great number of vortexsVd–antivortexsV̄d pairs

are generated at a lot of nucleation sites where both types ofV andV̄ are energetically favorable to

form. TheV and V̄ are propagated and then annihilated by their attractive interactions during the
relaxation dynamic process. These results reveal that temporal magnetization evolutions can be

dominated by the nucleation ofV–V̄ pairs, followed by their propagation and annihilation. The

dynamic process driven byV–V̄ pairs can play a significant role in various magnetization
reversals. ©2004 American Institute of Physics. [DOI: 10.1063/1.1784892]

The so-called magnetic vortex has a curling structure of
magnetizationsM d and a perpendicular componentsMzd at
its core1 in circular, rectangular, ellipse, and stadium-shaped
microfabricated elements of ultrathin magnetic films. This
type vortexsVd has attracted much attention2–8 because of
both its fundamental interest and technological applications
to ultrathin-film magnetic memory devices. The internal
structure of such vortex states in micron-sized elements com-
parable to the length scale of magnetostatic interactions have
been verified by magnetic force microcopy,4 Lorentz trans-
mission electron microcopy,5 and spin-polarized scanning
tunneling microscopy6 with a nanometer-scale(or less) spa-
tial resolution. Furthermore, experimental studies not only on
the magnetic vortices,3 but also their interactions in
magnetic-field drivenM reversals7 have been intensively
carried out with confined systems such as patterned dots or
their arrays. In addition, analytical interpretations8,9 and the-
oretical micromagnetic simulations10–12 of the characteristic
structures and the dynamical process of vortices9 in such
elements have provided insights into the fundamental under-
standing of their related static or dynamic properties in vari-
ousM reversals.13

On the other hand, the counterpart of a type ofV, i.e.,

antivortexsV̄d which has cross-bloch lines around its core of
either up or down orientation ofMz, has been usually found

in the periodic arrangement of alternatingV and V̄ on a
cross-tie wall at saw-tooth 180° domain boundaries in ultra-

thin magnetic films.1 In particular,V–V̄ pairs were also ob-
served at the forefront of small needle-shaped domains grow-
ing into oppositely oriented 180° domains in a continuous
33-nm-thick Fe film by using scanning transmission x-ray
microscopy.14 Quite recently, Eames and Dahlberg,15 and
Okunoet al.16 also reported the experimental observations of

V̄ as well asV in submicron stadium-shaped permalloy films

and have implicated both types ofV andV̄ in magnetic-field

driven M reversals. However, the roles of theV–V̄ pairs in
M evolution dynamics have not been studied in detail in
terms of their nucleation, propagation, and annihilation by
considering their attractive interactions.

In this letter, we carry out micromagnetic simulations on
an M dynamic process approaching the equilibrium vortex
state from an initial nonequilibrium state of random in-plane
M orientation under zero magnetic field in a model system of
a circular shaped Fe disk. The dynamic process associated

with many V–V̄ pairs is discussed in terms of their nucle-
ation, propagation, and annihilation that are driven by the

attractive interactions between the different types ofV andV̄.
Micromagnetic simulations were carried out onM dy-

namics in a circular shaped Fe disk having a thickness of
5 nm and a diameter of 1200 nm using the object-oriented
micromagnetic framework(OOMMF).17 The physical pa-
rameters for individual cubic cells of a 53535 nm3 dimen-
sion are used as follows: an exchange constant ofA=4.2
310−11 sJ/md, a saturation magnetization ofMs=1.7
3106 sA/md, an exchange length ofLex=4.8 nm, an aniso-
tropy constant ofK=0, and a damping parameter ofa=0.5.18

Figure 1 shows a magnetization vector image on many
interesting features of microstructures taken at a time oft
=0.59 ns during the relaxation process under zero magnetic
field as mentioned earlier. White or black small spots indi-
cate up or down orientation ofMz that is largely localized at

the cores of both types ofV andV̄. Circular- and cross-bloch
lines around each core represent circular- and cross-type vor-

tices, respectively. The cross-type vortex is calledV̄ to dis-
tinguish it from the counterpart circularV. The V has ener-
getically equivalent four states ofVR

↑ , VL
↑, VR

↓ , VL
↓ with left sLd

or right sRd handedness with up(↑) or down (↓) core orien-

tation. In contrast, theV̄ has only two states ofV̄↑ andV̄↓ that
are characterized by either of the up and down core orienta-
tions, as shown in Fig. 1. The characteristic in-plane orien-
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tation of V̄ is determined by the winding in-planeM of its
neighboring counterpartV. Many striking features regarding

V andV̄ are found as follows:(1) An array ofV andV̄ being

similar to a segment of the cross-tie wall,(2) V–V̄ pairs, and

(3) apparently isolatedV andV̄. It is certain from the results

that the V–V̄ pairs andV or V̄ are related closely toM
dynamic process.

To clarify the role of both types ofV and V̄ in dynamic
M evolution, the temporal evolution of magnetic microstruc-
tures is shown in Fig. 2, starting from an initial random
configuration of the in-planeM st=0 sd toward its final equi-
librium vortex state under zero magnetic field. We also plot

the numbers ofV and V̄, the average ofMz
2 over individual

cells skMz
2ld and exchangesEexd and magnetostaticsEmsd en-

ergies, and the sumsEtotd of the two energy terms as a func-
tion of t in Fig. 3. The in-plane random orientation att
=0 s is represented bykMz

2l=0 together with the largest val-
ues ofEex andEms (state①). As soon as the relaxation pro-
cess starts, thekMz

2l value reaches a maximum to reduce the
largestEex for the random in-plane orientation(state②). To

reduceEex more, a great number ofV andV̄ start to nucleate
at available nucleation sites where they are energetically fa-

vorable to form(state③). Well-formedV and V̄ appear att
=0.21 ns(state④) to decreaseEex as well asEms, and then
they start to propagate and annihilate as a further relaxation
proceeds.

Specifically, we highlight interactions betweenV and V̄
present in the areas indicated by dotted-line square, circle,
stadium, and triangle, starting fromt=0.59 ns(state⑤). The

FIG. 1. The plane-view image of magnetic microstructures taken att
=0.59 ns during a relaxation dynamics approaching the equilibrium vortex
state from an initial random in-planeM . The gray scale indicates theMz

component, while the contour lines with small arrows represent the in-plane
directions ofM . The white and black spots represent up and down core

orientations of both types ofV and V̄. The characteristic structures of vari-
ous vortex states are denoted by symbols as noted, which are described in
the text. Dotted-lines of square, triangle, stadium, and circle shapes high-
light the various features of vortices interacting with each other.

FIG. 2. The temporal evolution of magnetic microstructures taken at each time as noted during the relaxation dynamic process. The gray scale represents the

Mz component. The white and black spots indicate up and down orientations of bothV andV̄ cores. The dotted-lines of triangle, square, stadium, and circle
highlight striking features of interactions between various vortex structures.

FIG. 3. Time dependence of the numbers ofV andV̄ in (a), kMz
2l in (b), and

Eex, Ems, andEtot in (c). The vertical lines with the corresponding numbers
are marked for each image shown in Fig. 2. The insets in(b) and (c) show
the variations ofkMz

2l andE in the early time of the relaxation dynamics.
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VL
↑ andV̄↓ in the triangle-marked area disappear through their

propagation and annihilation processess⑤→⑥→⑦d. The
four different vortices in the square-marked area also disap-

pear through the attractive forces betweenVR
↑ andV̄↑, andVL

↓

andV̄↓, while seemingly isolatedVL
↑ in the dotted-line circle

is slowly taken out through the boundary. As shown in the

stadium marked area, it is noticeably interesting thatV̄↑ at-
tracts the counterpartVR

↑ placed near the boundary of the
disk, although the two are far away from each other. As the
propagation proceeds further,Eex, Ems, and its ratio
sEms/Eexd gradually decrease, whileEex, Ems, and the inverse
of Ems/Eex suddenly decrease upon the annihilation of each

of V–V̄ pairs.19 Consequently, attractive interactions between
each counterpart vortex lead to their propagation and annihi-
lation, thus governing theM dynamic process triggered by a

great number ofV and V̄ generated at the earlier stages.
Finally, detailed features of the interactions betweenVL

↑

and V̄↓ are shown in Fig. 4(a), andVR
↑ and V̄↑, VL

↓ and V̄↓ in
Fig. 4(b). This figure clearly shows that core–core distances

in each pair decrease and then individualV andV̄ collapse by
their attractive interactions as the relaxation process pro-

ceeds. Also, the pair axis connecting each core of theV–V̄
pair with their opposite core orientations rotates in the plane
by nearly 180° due to involved torques[Fig. 4(a)]. On the
other hand, such rotation is negligible for the same core ori-

entation, but still occurs somewhat due to the interactions
with the neighboring vortices as shown in Fig. 4(b). These

results indicate thatV and V̄, and their interactions can play
an important role in dynamicM evolutions.

In conclusion,M dynamics can be dominated by the

nucleation process ofV–V̄ pairs, followed by their propaga-
tion and annihilation driven by the attractive interactions be-

tween different types ofV and V̄. The V–V̄ pairs play a

crucial role inM dynamic process, and thus theV–V̄ pair
driven M evolution should be considered in the understand-
ing of static or dynamicM reversals.

The authors acknowledge K.-J. Lee for his valuable dis-
cussions. This work was supported by the Korea Science and
Engineering Foundation(KOSEF) through q-Psi at Hanyang
University.
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FIG. 4. Perspective views of the propagation and annihilation processes of

V-V̄ pairs present in the areas noted by the dotted-line triangles and squares
shown in Fig. 2. The dashed and solid lines indicate axes connecting be-

tween each core ofV and V̄ that propagate and annihilate as the relaxation
process proceeds.
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