326 research outputs found

    Incorporating prior financial domain knowledge into neural networks for implied volatility surface prediction

    Full text link
    In this paper we develop a novel neural network model for predicting implied volatility surface. Prior financial domain knowledge is taken into account. A new activation function that incorporates volatility smile is proposed, which is used for the hidden nodes that process the underlying asset price. In addition, financial conditions, such as the absence of arbitrage, the boundaries and the asymptotic slope, are embedded into the loss function. This is one of the very first studies which discuss a methodological framework that incorporates prior financial domain knowledge into neural network architecture design and model training. The proposed model outperforms the benchmarked models with the option data on the S&P 500 index over 20 years. More importantly, the domain knowledge is satisfied empirically, showing the model is consistent with the existing financial theories and conditions related to implied volatility surface.Comment: 8 pages, SIGKDD 202

    A Gaussian variational inference approach to motion planning

    Full text link
    We propose a Gaussian variational inference framework for the motion planning problem. In this framework, motion planning is formulated as an optimization over the distribution of the trajectories to approximate the desired trajectory distribution by a tractable Gaussian distribution. Equivalently, the proposed framework can be viewed as a standard motion planning with an entropy regularization. Thus, the solution obtained is a transition from an optimal deterministic solution to a stochastic one, and the proposed framework can recover the deterministic solution by controlling the level of stochasticity. To solve this optimization, we adopt the natural gradient descent scheme. The sparsity structure of the proposed formulation induced by factorized objective functions is further leveraged to improve the scalability of the algorithm. We evaluate our method on several robot systems in simulated environments, and show that it achieves collision avoidance with smooth trajectories, and meanwhile brings robustness to the deterministic baseline results, especially in challenging environments and tasks

    Stochastic Motion Planning as Gaussian Variational Inference: Theory and Algorithms

    Full text link
    We consider the motion planning problem under uncertainty and address it using probabilistic inference. A collision-free motion plan with linear stochastic dynamics is modeled by a posterior distribution. Gaussian variational inference is an optimization over the path distributions to infer this posterior within the scope of Gaussian distributions. We propose Gaussian Variational Inference Motion Planner (GVI-MP) algorithm to solve this Gaussian inference, where a natural gradient paradigm is used to iteratively update the Gaussian distribution, and the factorized structure of the joint distribution is leveraged. We show that the direct optimization over the state distributions in GVI-MP is equivalent to solving a stochastic control that has a closed-form solution. Starting from this observation, we propose our second algorithm, Proximal Gradient Covariance Steering Motion Planner (PGCS-MP), to solve the same inference problem in its stochastic control form with terminal constraints. We use a proximal gradient paradigm to solve the linear stochastic control with nonlinear collision cost, where the nonlinear cost is iteratively approximated using quadratic functions and a closed-form solution can be obtained by solving a linear covariance steering at each iteration. We evaluate the effectiveness and the performance of the proposed approaches through extensive experiments on various robot models. The code for this paper can be found in https://github.com/hzyu17/VIMP.Comment: 19 page

    Inhibition of EZH2 Promotes Human Embryonic Stem Cell Differentiation into Mesoderm by Reducing H3K27me3.

    Get PDF
    Mesoderm derived from human embryonic stem cells (hESCs) is a major source of the mesenchymal stem/stromal cells (MSCs) that can differentiate into osteoblasts and chondrocytes for tissue regeneration. While significant progress has been made in understanding of molecular mechanisms of hESC differentiation into mesodermal cells, little is known about epigenetic factors controlling hESC fate toward mesoderm and MSCs. Identifying potential epigenetic factors that control hESC differentiation will undoubtedly lead to advancements in regenerative medicine. Here, we conducted an epigenome-wide analysis of hESCs and MSCs and uncovered that EZH2 was enriched in hESCs and was downregulated significantly in MSCs. The specific EZH2 inhibitor GSK126 directed hESC differentiation toward mesoderm and generated more MSCs by reducing H3K27me3. Our results provide insights into epigenetic landscapes of hESCs and MSCs and suggest that inhibiting EZH2 promotes mesodermal differentiation of hESCs

    Sketch-a-Net that Beats Humans

    Full text link
    We propose a multi-scale multi-channel deep neural network framework that, for the first time, yields sketch recognition performance surpassing that of humans. Our superior performance is a result of explicitly embedding the unique characteristics of sketches in our model: (i) a network architecture designed for sketch rather than natural photo statistics, (ii) a multi-channel generalisation that encodes sequential ordering in the sketching process, and (iii) a multi-scale network ensemble with joint Bayesian fusion that accounts for the different levels of abstraction exhibited in free-hand sketches. We show that state-of-the-art deep networks specifically engineered for photos of natural objects fail to perform well on sketch recognition, regardless whether they are trained using photo or sketch. Our network on the other hand not only delivers the best performance on the largest human sketch dataset to date, but also is small in size making efficient training possible using just CPUs.Comment: Accepted to BMVC 2015 (oral

    Efficient Belief Road Map for Planning Under Uncertainty

    Full text link
    Robotic systems, particularly in demanding environments like narrow corridors or disaster zones, often grapple with imperfect state estimation. Addressing this challenge requires a trajectory plan that not only navigates these restrictive spaces but also manages the inherent uncertainty of the system. We present a novel approach for graph-based belief space planning via the use of an efficient covariance control algorithm. By adaptively steering state statistics via output state feedback, we efficiently craft a belief roadmap characterized by nodes with controlled uncertainty and edges representing collision-free mean trajectories. The roadmap's structured design then paves the way for precise path searches that balance control costs and uncertainty considerations. Our numerical experiments affirm the efficacy and advantage of our method in different motion planning tasks. Our open-source implementation can be found at https://github.com/hzyu17/VIMP/tree/BRM

    Diversity and Sparsity: A New Perspective on Index Tracking

    Get PDF
    We address the problem of partial index tracking, replicating a benchmark index using a small number of assets. Accurate tracking with a sparse portfolio is extensively studied as a classic finance problem. However in practice, a tracking portfolio must also be diverse in order to minimise risk -- a requirement which has only been dealt with by ad-hoc methods before. We introduce the first index tracking method that explicitly optimises both diversity and sparsity in a single joint framework. Diversity is realised by a regulariser based on pairwise similarity of assets, and we demonstrate that learning similarity from data can outperform some existing heuristics. Finally, we show that the way we model diversity leads to an easy solution for sparsity, allowing both constraints to be optimised easily and efficiently. we run out-of-sample backtesting for a long interval of 15 years (2003 -- 2018), and the results demonstrate the superiority of the proposed algorithm.Comment: Accepted to ICASSP 2020. 5 pages. This is a conference version of the work, for the full version, please refer to arXiv:1809.01989v

    Norovirus GII.17: The Emergence and Global Prevalence of a Novel Variant

    Get PDF
    A rare norovirus (NoV) genotype GII.17 has recently emerged and rapidly became predominant in most East Asian countries in the winters of 2014–2015. In this study, we report the diversity of NoV GII.17 in detail; a total of 646 GII.17 sequences obtained during 1978–2015 were analyzed and subjected to meta-analysis. At least five major recombinant GII.17 clusters were identified. Each recombinant variant group appeared to have emerged following the time order: GII.P4-GII.17 (1978–1990), GII.P16-GII.17 (2001–2004), GII.P13-GII.17 (2004–2010), GII.Pe-GII.17 (2012–2015) and GII.P3-GII.17 (2011–2015). The newly emerged GII.P3-GII.17 variant, which exhibited significant sequence and structure variations, is evolving toward a unique lineage. Our results indicate that circulation of GII.17 appears to change every 3–5 years due to replacement by a newly emerged variant and that the evolution of GII.17 is sequentially promoted by inter-genotype recombination, which contributes to the exchange between non-GII.17 and GII.17 RdRp genes and drives the evolution of GII.17 capsid genes

    Forcing the Whole Video as Background: An Adversarial Learning Strategy for Weakly Temporal Action Localization

    Full text link
    With video-level labels, weakly supervised temporal action localization (WTAL) applies a localization-by-classification paradigm to detect and classify the action in untrimmed videos. Due to the characteristic of classification, class-specific background snippets are inevitably mis-activated to improve the discriminability of the classifier in WTAL. To alleviate the disturbance of background, existing methods try to enlarge the discrepancy between action and background through modeling background snippets with pseudo-snippet-level annotations, which largely rely on artificial hypotheticals. Distinct from the previous works, we present an adversarial learning strategy to break the limitation of mining pseudo background snippets. Concretely, the background classification loss forces the whole video to be regarded as the background by a background gradient reinforcement strategy, confusing the recognition model. Reversely, the foreground(action) loss guides the model to focus on action snippets under such conditions. As a result, competition between the two classification losses drives the model to boost its ability for action modeling. Simultaneously, a novel temporal enhancement network is designed to facilitate the model to construct temporal relation of affinity snippets based on the proposed strategy, for further improving the performance of action localization. Finally, extensive experiments conducted on THUMOS14 and ActivityNet1.2 demonstrate the effectiveness of the proposed method.Comment: 9 pages, 5 figures, conferenc
    • …
    corecore