360 research outputs found

    Quantum Key Distribution (QKD) over Software-Defined Optical Networks

    Get PDF
    Optical network security is attracting increasing research interest. Currently, software-defined optical network (SDON) has been proposed to increase network intelligence (e.g., flexibility and programmability) which is gradually moving toward industrialization. However, a variety of new threats are emerging in SDONs. Data encryption is an effective way to secure communications in SDONs. However, classical key distribution methods based on the mathematical complexity will suffer from increasing computational power and attack algorithms in the near future. Noticeably, quantum key distribution (QKD) is now being considered as a secure mechanism to provision information-theoretically secure secret keys for data encryption, which is a potential technique to protect communications from security attacks in SDONs. This chapter introduces the basic principles and enabling technologies of QKD. Based on the QKD enabling technologies, an architecture of QKD over SDONs is presented. Resource allocation problem is elaborated in detail and is classified into wavelength allocation, time-slot allocation, and secret key allocation problems in QKD over SDONs. Some open issues and challenges such as survivability, cost optimization, and key on demand (KoD) for QKD over SDONs are discussed

    Side Channel Attack-Aware Resource Allocation for URLLC and eMBB Slices in 5G RAN

    Get PDF
    Network slicing is a key enabling technology to realize the provisioning of customized services in 5G paradigm. Due to logical isolation instead of physical isolation, network slicing is facing a series of security issues. Side Channel Attack (SCA) is a typical attack for slices that share resources in the same hardware. Considering the risk of SCA among slices, this paper investigates how to effectively allocate heterogeneous resources for the slices under their different security requirements. Then, a SCA-aware Resource Allocation (SCA-RA) algorithm is proposed for Ultra-reliable and Low-latency Communications (URLLC) and Enhanced Mobile Broadband (eMBB) slices in 5G RAN. The objective is to maximize the number of slices accommodated in 5G RAN. With dynamic slice requests, simulation is conducted to evaluate the performance of the proposed algorithm in two different network scenarios. Simulation results indicate that compared with benchmark, SCA-RA algorithm can effectively reduce blocking probability of slice requests. In addition, the usage of IT and transport resources is also optimized

    Deep Metric Multi-View Hashing for Multimedia Retrieval

    Full text link
    Learning the hash representation of multi-view heterogeneous data is an important task in multimedia retrieval. However, existing methods fail to effectively fuse the multi-view features and utilize the metric information provided by the dissimilar samples, leading to limited retrieval precision. Current methods utilize weighted sum or concatenation to fuse the multi-view features. We argue that these fusion methods cannot capture the interaction among different views. Furthermore, these methods ignored the information provided by the dissimilar samples. We propose a novel deep metric multi-view hashing (DMMVH) method to address the mentioned problems. Extensive empirical evidence is presented to show that gate-based fusion is better than typical methods. We introduce deep metric learning to the multi-view hashing problems, which can utilize metric information of dissimilar samples. On the MIR-Flickr25K, MS COCO, and NUS-WIDE, our method outperforms the current state-of-the-art methods by a large margin (up to 15.28 mean Average Precision (mAP) improvement).Comment: Accepted by IEEE ICME 202

    Introductory Chapter: Quantum Computing and Communications

    Get PDF

    Advances in the pharmacological effects and molecular mechanisms of emodin in the treatment of metabolic diseases

    Get PDF
    Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. are traditional Chinese medicines that have been used for thousands of years. They are formulated into various preparations and are widely used. Emodin is a traditional Chinese medicine monomer and the main active ingredient in Rhubarb palmatum L., Polygonum multijiorum Thunb., and Polygonum cuspidatum Sieb. Et Zucc. Modern research shows that it has a variety of pharmacological effects, including promoting lipid and glucose metabolism, osteogenesis, and anti-inflammatory and anti-autophagy effects. Research on the toxicity and pharmacokinetics of emodin can promote its clinical application. This review aims to provide a basis for further development and clinical research of emodin in the treatment of metabolic diseases. We performed a comprehensive summary of the pharmacology and molecular mechanisms of emodin in treating metabolic diseases by searching databases such as Web of Science, PubMed, ScienceDirect, and CNKI up to 2023. In addition, this review also analyzes the toxicity and pharmacokinetics of emodin. The results show that emodin mainly regulates AMPK, PPAR, and inflammation-related signaling pathways, and has a good therapeutic effect on obesity, hyperlipidemia, non-alcoholic fatty liver disease, diabetes and its complications, and osteoporosis. In addition, controlling toxic factors and improving bioavailability are of great significance for its clinical application

    Software‐Defined Optical Networking (SDON): Principles and Applications

    Get PDF
    Featured by the advantages of high capacity, long transmission distance, and low energy consumption, optical network has been deployed widely as the most important infrastructure for backbone transport network. With the development of Internet, datacenter has become the popular infrastructure for cloud computing, which needs to be connected with high bitrate transport network to support heterogeneous applications. In this case, optical network also becomes a promising option for intra and inter‐datacenter networking. In the networking field, software‐defined networking (SDN) has gained a lot of attention from both academic and industry, and it aims to provide a flexible and programmable control plane. SDN is applicable to optical network, and the optical network integrated with SDN, namely software‐defined optical network (SDON), are expected as the future transport solutions, which can provide both high bitrate connectivity and flexible network applications. The principles and applications of SDON are introduced in this chapter

    Intensive glucose control for critically ill patients: an updated meta-analysis

    Get PDF
    This meta-analysis aims to update the evidence for the effects of intensive glucose control (IGC) on the outcomes among critically ill patients. We performed a systematic literature review from inception through December, 2017 by two independent authors by searching PubMed, EMBASE and Cochrane Library. Randomized clinical trials of the effects of IGC compared with conventional glucose control were selected. Random-effect models were applied to calculate summary relative risks (RRs) for the related outcomes. Of 4247 records identified, we abstracted data from 27 relevant trials for meta-analysis. Compared with patients receiving conventional glucose control (controls), patients with IGC did not have significantly decreased risk of short-term mortality (in-hospital mortality or intensive care unit (ICU) mortality) (RR 0.99, 95% CI 0.92–1.06) or 3- to 6-month mortality (RR 1.02, 95% CI 0.97–1.08). These results remained constant among different study settings including surgical ICUs, medical ICUs or mixed ICUs. Similarly, we also found that patients with IGC did not have significantly lower risk of sepsis (RR 1.00, 95% CI 0.89–1.11) or new need for dialysis (RR 0.97, 95% CI 0.84–1.11). However, patients with IGC had almost 4-fold increase in risk of hypoglycemia (RR 4.86, 95% CI 3.16–7.46). In conclusion, in this updated meta-analysis of published trials, critically ill patients receiving IGC were found to be at neutral risk for short-term or 3- 6-month mortality, risk of sepsis or new need for dialysis, but at higher risk of hypoglycemia

    Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study

    Get PDF
    Bimetallic NiFe catalysts have emerged as a promising alternative to the traditional Ni catalysts for CO2 methanation. However, the promoting effect of Fe on the bimetallic catalysts remains ambiguous. In this study, a series of NiFe catalysts derived from hydrotalcite precursors were investigated. In situ x-ray diffraction (XRD) analysis revealed that small NiFe alloy particles were formed and remained stable during reaction. When Fe/Ni = 0.25, the alloy catalysts exhibited the highest CO2 conversion, CH4 selectivity and stability in CO2 methanation at low temperature of 250–350 °C. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study indicated that the formate pathway was the most plausible reaction scheme on both Ni and NiFe alloy catalysts, while a moderate addition of Fe facilitated the activation of CO2 via hydrogenation to *HCOO. Density functional theory (DFT) calculations further demonstrated that the overall energy barrier for CH4 formation was lower on the alloy surface.publishedVersio

    Positron trapping at the effective open volume in FeCr alloy containing hydrogen/helium atoms

    Get PDF
    4th Japan-China Joint Workshop on Positron Science (JWPS2019)Positron annihilation spectroscopy (PAS) is a sensitive probe of the shallow traps of light charged particles such as He/H embedded in solids. The nature of the shallow traps that attract positrons–i.e., whether the properties of the light charged particles or the number of particles contained in the traps affects the probability of positron capture–has so far remained unresolved. Here, the shallow traps of positron in FeCr alloy, namely (H, He)–V nano-clusters with open volume, have been investigated by first-principles calculations and a multi-grid based program package for electronic structure calculations. Various defect structures were modeled, including vacancies, interstitial helium atoms, and helium or hydrogen atoms occupying Fe vacancy sites. We calculated the charge density distribution at the (H, He)–V nano-clusters, and the results show that the charge density at the He/H–V clusters is significantly lower than around the neighboring Fe/Cr sites. The calculated lifetimes of positrons confined in the shallow traps are consistent with the effective open volume of the (H, He)–V complexes. These results suggest that a helium atom forms a more repulsive ion core than a hydrogen atom when it occupies the vacancy, resulting in a decrease in positron lifetime
    • 

    corecore