5,818 research outputs found
Computation-Performance Optimization of Convolutional Neural Networks with Redundant Kernel Removal
Deep Convolutional Neural Networks (CNNs) are widely employed in modern
computer vision algorithms, where the input image is convolved iteratively by
many kernels to extract the knowledge behind it. However, with the depth of
convolutional layers getting deeper and deeper in recent years, the enormous
computational complexity makes it difficult to be deployed on embedded systems
with limited hardware resources. In this paper, we propose two
computation-performance optimization methods to reduce the redundant
convolution kernels of a CNN with performance and architecture constraints, and
apply it to a network for super resolution (SR). Using PSNR drop compared to
the original network as the performance criterion, our method can get the
optimal PSNR under a certain computation budget constraint. On the other hand,
our method is also capable of minimizing the computation required under a given
PSNR drop.Comment: This paper was accepted by 2018 The International Symposium on
Circuits and Systems (ISCAS
Quantum heat valve and entanglement in superconducting resonators
Quantum superconducting circuit with flexible coupler has been a powerful
platform for designing quantum thermal machines. In this letter, we employ the
tunable coupling of two superconducting resonators to realize a heat valve by
modulating magnetic flux using a superconducting quantum interference device
(SQUID). It is shown that a heat valve can be realized in a wide parameter
range. We find a consistent relation between the heat current and quantum
entanglement, which indicates the dominant role of entanglement on the heat
valve. It provides an insightful understanding of quantum features in quantum
heat machines.Comment: 9 figures, 4 figure
rMAPS: RNA map analysis and plotting server for alternative exon regulation.
RNA-binding proteins (RBPs) play a critical role in the regulation of alternative splicing (AS), a prevalent mechanism for generating transcriptomic and proteomic diversity in eukaryotic cells. Studies have shown that AS can be regulated by RBPs in a binding-site-position dependent manner. Depending on where RBPs bind, splicing of an alternative exon can be enhanced or suppressed. Therefore, spatial analyses of RBP motifs and binding sites around alternative exons will help elucidate splicing regulation by RBPs. The development of high-throughput sequencing technologies has allowed transcriptome-wide analyses of AS and RBP-RNA interactions. Given a set of differentially regulated alternative exons obtained from RNA sequencing (RNA-seq) experiments, the rMAPS web server (http://rmaps.cecsresearch.org) performs motif analyses of RBPs in the vicinity of alternatively spliced exons and creates RNA maps that depict the spatial patterns of RBP motifs. Similarly, rMAPS can also perform spatial analyses of RBP-RNA binding sites identified by cross-linking immunoprecipitation sequencing (CLIP-seq) experiments. We anticipate rMAPS will be a useful tool for elucidating RBP regulation of alternative exon splicing using high-throughput sequencing data
Quantum heat valve and diode of strongly coupled defects in amorphous material
The mechanical strain can control the frequency of two-level atoms in
amorphous material. In this work, we would like to employ two coupled two-level
atoms to manipulate the magnitude and direction of heat transport by
controlling mechanical strain to realize the function of a thermal switch and
valve. It is found that a high-performance heat diode can be realized in the
wide Piezo voltage range at different temperatures. We also discuss the
dependence of the rectification factor on temperatures and couplings of heat
reservoirs. We find that the higher temperature differences correspond to the
larger rectification effect. The asymmetry system-reservoir coupling strength
can enhance the magnitude of heat transfer, and the impact of asymmetric and
symmetric coupling strength on the performance of the heat diode is
complementary. It may provide an efficient way to modulate and control heat
transport's magnitude and flow preference. This work may give insight into
designing and tuning quantum heat machines.Comment: 10 pages, 9 figures;Accepted for publication in Physical Review
- …