79,154 research outputs found
Localization of Macroscopic Object Induced by the Factorization of Internal Adiabatic Motion
To account for the phenomenon of quantum decoherence of a macroscopic object,
such as the localization and disappearance of interference, we invoke the
adiabatic quantum entanglement between its collective states(such as that of
the center-of-mass (C.M)) and its inner states based on our recent
investigation. Under the adiabatic limit that motion of C.M dose not excite the
transition of inner states, it is shown that the wave function of the
macroscopic object can be written as an entangled state with correlation
between adiabatic inner states and quasi-classical motion configurations of the
C.M. Since the adiabatic inner states are factorized with respect to each parts
composing the macroscopic object, this adiabatic separation can induce the
quantum decoherence. This observation thus provides us with a possible solution
to the Schroedinger cat paradoxComment: Revtex4,23 pages,1figur
Monte-Carlo approach to calculate the proton stopping in warm dense matter within particle-in-cell simulations
A Monte-Carlo approach to proton stopping in warm dense matter is implemented
into an existing particle-in-cell code. The model is based on multiple
binary-collisions among electron-electron, electron-ion and ion-ion, taking
into account contributions from both free and bound electrons, and allows to
calculate particle stopping in much more natural manner. At low temperature
limit, when ``all'' electron are bounded at the nucleus, the stopping power
converges to the predictions of Bethe-Bloch theory, which shows good
consistency with data provided by the NIST. With the rising of temperatures,
more and more bound electron are ionized, thus giving rise to an increased
stopping power to cold matter, which is consistent with the report of a
recently experimental measurement [Phys. Rev. Lett. 114, 215002 (2015)]. When
temperature is further increased, with ionizations reaching the maximum,
lowered stopping power is observed, which is due to the suppression of
collision frequency between projected proton beam and hot plasmas in the
target.Comment: 6 pages, 4 figure
Monte-Carlo approach to calculate the ionization of warm dense matter within particle-in-cell simulations
A physical model based on a Monte-Carlo approach is proposed to calculate the
ionization dynam- ics of warm dense matters (WDM) within particle-in-cell
simulations, and where the impact (col- lision) ionization (CI), electron-ion
recombination (RE) and ionization potential depression (IPD) by surrounding
plasmas are taken into consideration self-consistently. When compared with
other models, which are applied in the literature for plasmas near thermal
equilibrium, the temporal re- laxation of ionization dynamics can also be
simulated by the proposed model. Besides, this model is general and can be
applied for both single elements and alloys with quite different composi-
tions. The proposed model is implemented into a particle-in-cell (PIC) code,
with (final) ionization equilibriums sustained by competitions between CI and
its inverse process (i.e., RE). Comparisons between the full model and model
without IPD or RE are performed. Our results indicate that for bulk aluminium
in the WDM regime, i) the averaged ionization degree increases by including
IPD; while ii) the averaged ionization degree is significantly over estimated
when the RE is neglected. A direct comparison from the PIC code is made with
the existing models for the dependence of averaged ionization degree on thermal
equilibrium temperatures, and shows good agreements with that generated from
Saha-Boltzmann model or/and FLYCHK code.Comment: 7 pages, 4 figure
Robust Preparation of GHZ and W States of Three Distant Atoms
Schemes to generate Greenberger-Horne-Zeilinger(GHZ) and W states of three
distant atoms are proposed in this paper. The schemes use the effects of
quantum statistics of indistinguishable photons emitted by the atoms inside
optical cavities. The advantages of the schemes are their robustness against
detection inefficiency and asynchronous emission of the photons. Moreover, in
Lamb-Dicke limit, the schemes do not require simultaneous click of the
detectors, this makes the schemes more realizable in experiments.Comment: 5 pages, 1 fiure. Phys. Rev. A 75, 044301 (2007
On the efficiency of estimating penetrating rank on large graphs
P-Rank (Penetrating Rank) has been suggested as a useful measure of structural similarity that takes account of both incoming and outgoing edges in ubiquitous networks. Existing work often utilizes memoization to compute P-Rank similarity in an iterative fashion, which requires cubic time in the worst case. Besides, previous methods mainly focus on the deterministic computation of P-Rank, but lack the probabilistic framework that scales well for large graphs. In this paper, we propose two efficient algorithms for computing P-Rank on large graphs. The first observation is that a large body of objects in a real graph usually share similar neighborhood structures. By merging such objects with an explicit low-rank factorization, we devise a deterministic algorithm to compute P-Rank in quadratic time. The second observation is that by converting the iterative form of P-Rank into a matrix power series form, we can leverage the random sampling approach to probabilistically compute P-Rank in linear time with provable accuracy guarantees. The empirical results on both real and synthetic datasets show that our approaches achieve high time efficiency with controlled error and outperform the baseline algorithms by at least one order of magnitude
- …