15 research outputs found

    Distributed Time-Varying Optimization of Second-Order Multiagent Systems Under Limited Interaction Ranges

    No full text
    This article investigates the distributed time-varying optimization problem for second-order multiagent systems (MASs) under limited interaction ranges. The goal is to seek the minimum of the sum of local time-varying cost functions (CFs), where each CF is only available to the corresponding agent. Limited communication range refers to the scenario where the agents have limited sensing and communication capabilities, that is, a pair of agents can communicate with each other only if their distance is within a certain range. To handle such a problem, a new continuous connectivity-preserving mechanism is presented to preserve the connectivity of the considered network. Then, two distributed optimization algorithms are presented to solve the optimization problem with time-varying CFs and time-invariant CFs, respectively. Theoretical analysis and two numerical examples are provided to verify the effectiveness of the methods.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Bart De Schutte

    The Set-Invariance Paradigm in Fuzzy Adaptive DSC Design of Large-Scale Nonlinear Input-Constrained Systems

    No full text
    This paper proposes a novel set-invariance adaptive dynamic surface control (DSC) design for a larger class of uncertain large-scale nonlinear input-saturated systems. The peculiarity of this class is that no a priori bound on the continuous control gain functions is assumed (i.e., their boundedness cannot be assumed before obtaining system stability). This requires a new design. Differently from the available methods, the proposed design involves the construction of appropriate invariant sets for the closed-loop trajectories, which allows to remove the restrictive assumption of a priori bounds of the control gain functions. Furthermore, we show that such set-invariance design can handle input constraints in the form of input saturation. In line with the DSC methodology, semi-globally uniformly ultimate boundedness is proven: however, differently from the standard methodology, stability analysis requires the combination of Lyapunov and invariant set theories.Accepted Author ManuscriptTeam DeSchutte

    Establishing Platoons of Bidirectional Cooperative Vehicles with Engine Limits and Uncertain Dynamics

    Get PDF
    In adaptive platooning strategies proposed in literature to handle uncertain and nonidentical uncertain vehicle dynamics (uncertain heterogeneous platoons) two aspects requiring proper design are neglected: bidirectional interaction among vehicles which might lead to loss of string stability, and engine saturation constraints which might lead to loss of cohesiveness. This work proposes a novel adaptive platooning strategy handling these two crucial aspects. Specifically, bidirectional interaction is handled by designing bidirectional reference dynamics with proven string stability properties, to which the uncertain heterogeneous platoon should homogenize; engine constraints are handled via a proposed a mechanism that makes such reference dynamics 'not too demanding', by properly saturating their action. The saturation action will allow all vehicles in the platoon to not hit their engine limits, preserving cohesiveness. Simulations are conducted to validate the theoretical analysis and show the effectiveness of the method in retaining cohesiveness of the platoon. Accepted Author ManuscriptTeam DeSchutterIntelligent Vehicle

    A Separation-Based Methodology to Consensus Tracking of Switched High-Order Nonlinear Multiagent Systems

    No full text
    This work investigates a reduced-complexity adaptive methodology to consensus tracking for a team of uncertain high-order nonlinear systems with switched (possibly asynchronous) dynamics. It is well known that high-order nonlinear systems are intrinsically challenging as feedback linearization and backstepping methods successfully developed for low-order systems fail to work. Even the adding-one-power-integrator methodology, well explored for the single-agent high-order case, presents some complexity issues and is unsuited for distributed control. At the core of the proposed distributed methodology is a newly proposed definition for separable functions: this definition allows the formulation of a separation-based lemma to handle the high-order terms with reduced complexity in the control design. Complexity is reduced in a twofold sense: the control gain of each virtual control law does not have to be incorporated in the next virtual control law iteratively, thus leading to a simpler expression of the control laws; the power of the virtual and actual control laws increases only proportionally (rather than exponentially) with the order of the systems, dramatically reducing high-gain issues.Accepted Author ManuscriptTeam DeSchutte

    A Cooperative Protocol for Vehicle Merging Using Bi-dimensional Artificial Potential Fields

    No full text
    In recent years, platooning solutions like cooperative adaptive cruise control (CACC) have been deeply studied. It is common in such platooning literature to assume that the vehicles drive on the same lane (longitudinal platooning). At the same time, lateral control during merging maneuvers is commonly addressed as a path planning problem, in which the ego vehicle changes the lane during merging without necessarily cooperating with its neighboring vehicles (i.e. without considering gap closing). The primary objective of this article is to develop a control strategy which involves both longitudinal and lateral vehicle dynamics, where the vehicles merge and form a platoon in a cooperative way without a priori path planning. Appropriately designed bi-dimensional artificial potential fields are used to achieve this goal and the proposed protocol is verified through simulations with CarSim.Accepted Author ManuscriptTeam Bart De Schutte

    Neuro-Adaptive Cooperative Tracking Rendezvous of Nonholonomic Mobile Robots

    No full text
    This brief proposes a neuro-adaptive method for the unsolved problem of cooperative tracking rendezvous of nonholonomic mobile robots (NMRs) subject to uncertain and unmodelled dynamics. A hierarchical cooperative control framework is proposed, which consists of a novel distributed estimator along with local neuro-adaptive tracking controllers. Rigorous stability analysis as well as simulation experiments illustrate the proposed method.Accepted Author ManuscriptTeam DeSchutte

    Distributed Actor-Critic Algorithms for Multiagent Reinforcement Learning Over Directed Graphs

    No full text
    Actor-critic (AC) cooperative multiagent reinforcement learning (MARL) over directed graphs is studied in this article. The goal of the agents in MARL is to maximize the globally averaged return in a distributed way, i.e., each agent can only exchange information with its neighboring agents. AC methods proposed in the literature require the communication graphs to be undirected and the weight matrices to be doubly stochastic (more precisely, the weight matrices are row stochastic and their expectation are column stochastic). Differently from these methods, we propose a distributed AC algorithm for MARL over directed graph with fixed topology that only requires the weight matrix to be row stochastic. Then, we also study the MARL over directed graphs (possibly not connected) with changing topologies, proposing a different distributed AC algorithm based on the push-sum protocol that only requires the weight matrices to be column stochastic. Convergence of the proposed algorithms is proven for linear function approximation of the action value function. Simulations are presented to demonstrate the effectiveness of the proposed algorithms.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Bart De Schutte

    Distributed Reinforcement Learning Algorithm for Dynamic Economic Dispatch with Unknown Generation Cost Functions

    No full text
    In this article, the dynamic economic dispatch (DED) problem for smart grid is solved under the assumption that no knowledge of the mathematical formulation of the actual generation cost functions is available. The objective of the DED problem is to find the optimal power output of each unit at each time so as to minimize the total generation cost. To address the lack of a priori knowledge, a new distributed reinforcement learning optimization algorithm is proposed. The algorithm combines the state-action-value function approximation with a distributed optimization based on multiplier splitting. Theoretical analysis of the proposed algorithm is provided to prove the feasibility of the algorithm, and several case studies are presented to demonstrate its effectiveness.Accepted Author ManuscriptTeam DeSchutte

    Consensus in high-power multiagent systems with mixed unknown control directions via hybrid Nussbaum-based control

    No full text
    This work investigates the consensus tracking problem for high-power nonlinear multiagent systems with partially unknown control directions. The main challenge of considering such dynamics lies in the fact that their linearized dynamics contain uncontrollable modes, making the standard backstepping technique fail; also, the presence of mixed unknown control directions (some being known and some being unknown) requires a piecewise Nussbaum function that exploits the a priori knowledge of the known control directions. The piecewise Nussbaum function technique leaves some open problems, such as Can the technique handle multiagent dynamics beyond the standard backstepping procedure? and Can the technique handle more than one control direction for each agent? In this work, we propose a hybrid Nussbaum technique that can handle uncertain agents with high-power dynamics where the backstepping procedure fails, with nonsmooth behaviors (switching and quantization), and with multiple unknown control directions for each agent.Accepted Author ManuscriptTeam DeSchutte

    A Hybrid Recursive Implementation of Broad Learning With Incremental Features

    No full text
    The broad learning system (BLS) paradigm has recently emerged as a computationally efficient approach to supervised learning. Its efficiency arises from a learning mechanism based on the method of least-squares. However, the need for storing and inverting large matrices can put the efficiency of such mechanism at risk in big-data scenarios. In this work, we propose a new implementation of BLS in which the need for storing and inverting large matrices is avoided. The distinguishing features of the designed learning mechanism are as follows: 1) the training process can balance between efficient usage of memory and required iterations (hybrid recursive learning) and 2) retraining is avoided when the network is expanded (incremental learning). It is shown that, while the proposed framework is equivalent to the standard BLS in terms of trained network weights,much larger networks than the standard BLS can be smoothly trained by the proposed solution, projecting BLS toward the big-data frontier.Accepted Author ManuscriptTeam DeSchutte
    corecore