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Establishing Platoons of Bidirectional Cooperative
Vehicles With Engine Limits and

Uncertain Dynamics
Simone Baldi , Senior Member, IEEE, Di Liu , Vishrut Jain , and Wenwu Yu , Senior Member, IEEE

Abstract— In adaptive platooning strategies proposed in
literature to handle uncertain and nonidentical uncertain vehicle
dynamics (uncertain heterogeneous platoons) two aspects requir-
ing proper design are neglected: bidirectional interaction among
vehicles which might lead to loss of string stability, and engine
saturation constraints which might lead to loss of cohesiveness.
This work proposes a novel adaptive platooning strategy handling
these two crucial aspects. Specifically, bidirectional interaction
is handled by designing bidirectional reference dynamics with
proven string stability properties, to which the uncertain het-
erogeneous platoon should homogenize; engine constraints are
handled via a proposed a mechanism that makes such reference
dynamics ‘not too demanding’, by properly saturating their
action. The saturation action will allow all vehicles in the platoon
to not hit their engine limits, preserving cohesiveness. Simulations
are conducted to validate the theoretical analysis and show
the effectiveness of the method in retaining cohesiveness of the
platoon.

Index Terms— Cooperative adaptive cruise control, engine
constraints, bidirectional communication, heterogeneous platoon.

I. INTRODUCTION

COOPERATIVE Adaptive Cruise Control (CACC), also
referred to as platooning, is a way of grouping vehicles

into platoons with a defined intervehicle spacing policy by
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using vehicle-to-vehicle wireless communication in addition
to on-board sensors [1], [2]. After initial studies on homoge-
neous platoons [3], [4], it was soon recognized that several
heterogeneities might influence the platooning effectiveness:
networked-induced delays and packet losses have been well
studied in literature as they generate some level of heterogene-
ity in wireless CACC communication [5]–[7]. Methods used
to achieve platooning over unreliable communication include
observers [8]–[10] or switched CACC strategies [11], [12].

However, a more substantial level of heterogeneity arises
from the vehicle dynamics [13]: notably, cohesiveness of a
platoon of nonidentical (heterogeneous) vehicles can be lost
in the presence of engine saturating limits (e.g. a family car
can lose cohesiveness in a platoon with sport cars). As opposed
to standard unidirectional look-ahead interaction (where each
vehicle adjusts the spacing with the front vehicle only), the use
of bidirectional interaction (adjusting the spacing with both
the front and the rear vehicle) was proposed to improve
cohesiveness [14]. Unfortunately, bidirectionality creates the
challenge of defining bidirectional string stability [15], [16]
(string stability refers to the attenuation of disturbances as they
propagate through the platoon [17]). This challenge makes the
use of bidirectionality in CACC an open question: in fact, all
forthcoming cited works refer to unidirectional platooning.

A pioneering work considering the fundamental control
limitations in platoons was [18]; [19] also studied the limita-
tions of platoons subject to saturation. Both works (and recent
ones, [20] on homogeneous vehicles with actuator faults, [21]
on homogeneous platoons with velocity constraints, [22] on
low-gain control, [23] on antiwindup, [24] on car-following
interaction) come to the same conclusion: loss of cohesiveness
can be systematically eliminated only at the price of losing
performance so as to prevent engine saturation. Unfortunately,
these works on saturation do not focus on heterogeneous vehi-
cle dynamics, an important source of heterogeneity and uncer-
tainty. Recently, CACC strategies were proposed to address
vehicle heterogeneity by adapting the control gains [25]–[27].
Such strategies define homogeneous reference dynamics that
the heterogenous platoon should match. Distributed matching
conditions define the control gains to match the reference
dynamics [28]: with uncertain vehicle dynamics, such match-
ing gains should be learned via appropriate adaptive laws [29].
The learning mechanism makes these strategies intrinsically
nonlinear, and thus possibly more flexible than fixed-gain or
linear CACC strategies.
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Despite the progress in the CACC field1, the research in
this work stems from the following open questions: is it
possible to improve platoon cohesiveness adaptively when the
engine dynamics of the vehicles are uncertain and subject to
saturation? Can the adaptation law benefit from the presence
of bidirectional communication? The main contribution of this
work is enhancing the adaptive platooning methodology by
giving a positive answer to these questions.

As a first answer/contribution, we design bidirectional
reference dynamics to which the heterogeneous platoon
should adaptively homogenize, and whose string stability
properties are shown via appropriate criteria. As a second
answer/contribution, we propose a mechanism that makes
the reference dynamics ‘not too demanding’, by applying a
properly designed saturation action that prevents all vehicles
from hitting their engine bounds. This is in line with the
studies [18], [19], i.e. saturation can be eliminated only at the
price of losing performance. As even the most recent literature
on platooning focuses on longitudinal dynamics (lateral string
stability and nonholonomic constraints arising from lateral
dynamics are unsolved challenges up to now [32], [34]–[38]),
in this work we will also consider longitudinal dynamics.

The paper is organized as follows. In Section II, a CACC
platoon with bidirectional interaction and string stability
properties is presented. Engine saturation is introduced in
Section III, together with the proposed adaptive mechanism.
Simulation results are presented in Section IV.

II. CACC SYSTEM STRUCTURE

Consider the platoon in Fig. 1, where vi and di represent
the velocity (m/s) of vehicle i , and the spacing (m) between
vehicle i and its preceding vehicle. As Fig. 1, highlights, let
us considers a bidirectional communication with preceding
and succeeding vehicle, an extension of the unidirectional
look-ahead communication with preceding vehicle [3].

A constant time headway policy regulates the spacing
between vehicles, implemented by defining the look-ahead
desired spacing ddes, f,i and look-back desired spacing ddes,b,i :

ddes, f,i(t) = ri + hvi (t)

ddes,b,i(t) = ri + hvi+1(t), i ∈ SM

where ri is the standstill distance (m), h the time headway (s),
and SM = {i ∈ N| 1 ≤ i ≤ M}, being M the number of
vehicles and i = 0 reserved for the leading vehicle.

With bidirectionality, errors in both the look-ahead and
look-back direction are considered, the look-ahead error being

e f,i (t) = di−1,i (t) − ddes, f ,i(t)

= (qi−1(t) − qi (t) − Li ) − (ri + hvi (t)) (1)

and the look-back error being

eb,i (t) = −(di,i+1(t) − ddes,b,i(t))

= −((qi (t)−qi+1(t)−Li+1)−(ri + hvi+1(t))) (2)

with qi and Li representing vehicle i ’s rear-bumper position
(m) and length (m), and di−1,i and di,i+1 representing the

1The interested reader might consult recently published advances in IEEE
ITS Special Issue on the 2016 Grand Cooperative Driving Challenge [30]–[33]

Fig. 1. CACC-equipped heterogeneous vehicle platoon with bidirectional
communication (edited from [36]).

intervehicle distances. The sign convention for the look-back
error is chosen to be opposite to the look-ahead error (as the
errors point in different directions). Finally, the total spacing
error is taken as the convex combination of e f,i and eb,i

ei (t) = c1e f,i (t) + c2eb,i (t), 1 ≤ i < M (3)

with c1 ∈ (0, 1] and c2 = 1−c1. Note that for c1 = 1 and c2 =
0 one would have the standard CACC unidirectional situation
in which only the look-ahead spacing error is considered. For
c1 = c2 = 0.5 one would have a bidirectional situation in
which look-ahead and look-back errors are equally weighted.
As the leading and the last vehicle can only measure look-back
and look-ahead error respectively, their error is simply

e0(t) = eb,0(t) = q1(t) − q0(t) + L1 + r + hv1(t)

eM (t) = e f,M (t) = qM−1(t) − qM (t) − L M−r−hvM (t).

The control objective is to regulate ei to zero ∀i ∈ SM ∪ {0},
while ensuring string stability of the platoon. Upon regulation
of ei to zero, the platoon is said to be cohesive.

Remark 1: The notion of cohesiveness is intrinsic to the
spacing policy: while for a constant distance policy the relative
distance is a good measure of cohesiveness, the best measure
of cohesiveness for a constant time headway policy is the spac-
ing error (3), as the relative distance is velocity dependent. In
both constant distance and constant time headway policies,
the relative velocities, to be regulated to zero to keep the
platoon cohesive, are another good measure of cohesiveness.

The following model is standard [3] to represent the vehicles
in the platoon

⎛
⎝ḋi

v̇i

ȧi

⎞
⎠ =

⎛
⎝ vi−1 − vi

ai

− 1
τi

ai + 1
τi

ui

⎞
⎠ , i ∈ SM ∪ {0} (4)

with ai and ui being the acceleration (m/s2) and input (m/s2),
and τi (s) being the engine time constant of the i th vehicle.

In the following we address three basic concepts for a
homogeneous platoon with identical τi : design a baseline
CACC protocol (Sect. II.A); define and analyze bidirectional
string stability (Sect. II.B); introduce uncertainty in the vehicle
dynamics (Sect. II.C). Let us focus on the unsaturated case,
while saturation will be covered in Sect. III.

Authorized licensed use limited to: University of Groningen. Downloaded on January 05,2022 at 04:37:23 UTC from IEEE Xplore.  Restrictions apply. 
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A. The CACC Control Structure

The control action can be designed by formulating the error
dynamics. Define the error states as⎛

⎝e1,i

e2,i

e3,i

⎞
⎠ =

⎛
⎝ei

ėi

ëi

⎞
⎠ , 0 ≤ i ≤ M. (5)

State-of-the-art CACC protocols design the control action
assuming identical τi (baseline homogeneous condition) [3],
so that the baseline control input (indicated with the subscript
bl) can be derived from the dynamics of e3,i , via (3) and (4)

ė3,i =−1

τi
e3,i − 1

τi
pi + c1

τi
ui−1,bl + c2

τi
ui+1,bl + hc2

τi
u̇i+1,bl (6)

with pi = ui,bl + hc1u̇i,bl . From (6) it is clear that pi should
stabilize the error dynamics (5) while compensating for the
terms ui−1,bl , ui+1,bl and u̇i+1,bl . Hence, define pi as

pi =(k p kd kdd)

⎛
⎝e1,i

e2,i

e3,i

⎞
⎠+c1ui−1,bl +c2ui+1,bl +hc2u̇i+1,bl

(7)

with kp, kd and kdd being gains to be designed in order to
have stability/string stability specifications. The feedforward
terms ui−1,bl , ui+1,bl and u̇i+1,bl can be obtained via wireless
communication with the preceding and succeeding vehicle [3].

From (7) the controller dynamics is given by

u̇i,bl = − 1

hc1
ui,bl + 1

hc1
(k pe1,i + kde2,i + kdde3,i )

+ 1

h
ui−1,bl + c2

hc1
ui+1,bl + c2

c1
u̇i+1,bl . (8)

It is well known in literature that kdd can be set to be zero to
avoid feedback from the relative acceleration, which is very
difficult to get in practice [39]. This results in

⎛
⎜⎜⎝

ė1,i

ė2,i

ė3,i

u̇i,bl

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0

−k p

τi
−kd

τi
− 1

τi
0

k p

hc1

kd

hc1
0 − 1

hc1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

e1,i

e2,i

e3,i

ui,bl

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1

h

c2

hc1

c2

c1

⎞
⎟⎟⎟⎠
⎛
⎝ui−1,bl

ui+1,bl

u̇i+1,bl

⎞
⎠ ∀i ∈ SM \{M} . (9)

If the errors are written in terms of velocity and acceleration,
(9) can be equivalently written, ∀i ∈ SM \ {M}, as⎛
⎜⎜⎝

ėi

v̇i

ȧi

u̇i,bl

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 −1 −hc1 0
0 0 1 0

0 0 − 1

τi

1

τi
k p

hc1
− kd

hc1
−kd − 1

hc1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

ei

vi

ai

ui,bl

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎝

c1 c2 hc2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
kd

h

kdc2

hc1

kdc2

c1

1

h

c2

hc1

c2

c1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

vi−1
vi+1
ai+1

ui−1,bl

ui+1,bl

u̇i+1,bl

⎞
⎟⎟⎟⎟⎟⎟⎠
(10)

which represents the dynamics of a vehicle equipped with
baseline CACC protocol. Notice that (9) (or (10)) are valid
for i ∈ SM \{M}, i.e. only for those vehicles with both a front
and a rear vehicle. The leading vehicles and the last vehicle
obey slightly different dynamics, as clarified hereafter.

B. Analysis of Bidirectional String Stability

String stability refers to the capability of CACC to attenuate
exogenous inputs (e.g. leader input) as they propagate through
the platoon. To analyze if a platoon is string stable we need to
derive the corresponding interconnected dynamics. Available
CACC string stability criteria are based on homogeneity of the
vehicles: without loss of generality we consider homogeneity
with respect to the leading vehicle, i.e., τi = τ0, ∀i . To proceed
with the analysis, we will write the interconnections among
vehicles in a compact way, by defining the state

ti = c1ui,bl − c2ui+1,bl , 0 ≤ i < M − 1 (11)

tM = c1uM,bl , i = M.

It can be noticed that

c1ui,bl = ti + c2

c1
ti+1+

�
c2

c1

	2

ti+2+. . .+
�

c2

c1

	M−i

tM . (12)

After manipulating (10) via (12) we obtain, i ∈ SM \ {M}

⎛
⎜⎜⎝

ėi

v̇i

ȧi

ṫi

⎞
⎟⎟⎠


 �� 
υ̇i

=

⎛
⎜⎜⎜⎜⎜⎝

0 −1 −hc1 0
0 0 1 0

0 0 − 1

τ0

1

τ0c1
k p

h
−kd

h
−kdc1 − 1

h

⎞
⎟⎟⎟⎟⎟⎠


 �� 
A0

⎛
⎜⎜⎝

ei

vi

ai

ti

⎞
⎟⎟⎠


 �� 
υi

+

⎛
⎜⎜⎜⎝

0 c1 0 0
0 0 0 0
0 0 0 0

0
kdc1

h
0

1

h

⎞
⎟⎟⎟⎠


 �� 
A−1

⎛
⎜⎜⎝

ei−1
vi−1
ai−1
ti−1

⎞
⎟⎟⎠


 �� 
υi−1

+

⎛
⎜⎜⎜⎜⎜⎝

0 c2 hc2 0
0 0 0 0

0 0 0
c2

τ0c1
2

0
kdc2

h
kdc2 0

⎞
⎟⎟⎟⎟⎟⎠


 �� 
A1

⎛
⎜⎜⎝

ei+1
vi+1
ai+1
ti+1

⎞
⎟⎟⎠


 �� 
υi+1
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+ · · · +

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 0
c2

M−i

τ0c1
M+1−i

0 0 0 0

⎞
⎟⎟⎟⎟⎠


 �� 
AM−i

⎛
⎜⎜⎝

eM

vM

aM

tM

⎞
⎟⎟⎠


 �� 
υM

. (13)

which holds for all vehicles in the platoon, excluding the
leading and the last vehicle. In fact, as the last vehicle has no
following vehicles, we define the unidirectional CACC control

hu̇M,bl = −uM,bl + (k pe1,M + kde2,M ) + uM−1,bl (14)

which becomes, in terms of tM ,

hṫM = c2 − c1

c1
tM + c1(k pe1,M + kde2,M ) + tM−1. (15)

Hence the dynamics of the last vehicle can be described by

υ̇M =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 −h 0
0 0 1 0

0 0 − 1

τ0

1

τ0 c1
k pc1

h
−kdc1

h
−kdc1

c2 − c1

hc1

⎞
⎟⎟⎟⎟⎟⎠


 �� 
E0

υM

+

⎛
⎜⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0

0
kdc1

h
0

1

h

⎞
⎟⎟⎟⎠


 �� 
E−1

υM−1. (16)

On the other end, after using t0 = c1 u0,bl − c2 u1,bl ,
the dynamics of the leading vehicle become

υ̇0 =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0
0 0 1 0

0 0 − 1

τ0
0

kpc2

h
−kdc2

h
0 − 1

h
− c2

hc1

⎞
⎟⎟⎟⎟⎟⎠υ0

+

⎛
⎜⎜⎜⎝

0 1 h 0
0 0 0 0
0 0 0 0

0
kdc2

h
kdc2 0

⎞
⎟⎟⎟⎠υ1+

⎛
⎜⎜⎜⎜⎜⎝

0
0
1

τ0

−c2

h

⎞
⎟⎟⎟⎟⎟⎠u0,bl +

⎛
⎜⎜⎜⎝

0
0
0
c1

h

⎞
⎟⎟⎟⎠ur .

(17)

The leader vehicle is the only vehicle that can set the platoon
acceleration ur as the exogenous input. That is, (17) has been
derived by imposing the leader control action as

hc1u̇0,bl =−u0,bl +c2(k pe1,0+kde2,0)+ur +c2u1,bl +hc2u̇1,bl

(18)

which becomes, in terms of t0,

hṫ0 =
�

−1 − c2

c1

	
t0 + c2(k pe1,0 + kde2,0) −

�
c2

c1

	2

t1

−
�

c2

c1

	3

t2 − . . . −
�

c2

c1

	M+1

tM + ur . (19)

The importance of (13), (16) and (17) is to allow checking
how the effect of the exogenous input ur propagates through-
out a bidirectional platoon. To analyze such effect, we write
u0,bl in (17) as a function of the states of the vehicles via (12).
Hence, (17) becomes

⎛
⎜⎜⎝

ė0
v̇0
ȧ0
ṫ0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0
0 0 1 0

0 0 − 1

τ0

1

τ0c1
k pc2

h
−kdc2

h
0 − 1

h
− c2

hc1

⎞
⎟⎟⎟⎟⎟⎠


 �� 
F0

⎛
⎜⎜⎝

e0
v0
a0
t0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0 1 h 0
0 0 0 0

0 0 0
1

τ0c1

c2

c1

0
kdc2

h
kdc2 − 1

h
(
c2

c1
)2

⎞
⎟⎟⎟⎟⎟⎠


 �� 
F1

⎛
⎜⎜⎝

e1
v1
a1
t1

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 0
1

τ0c1
(
c2

c1
)2

0 0 0 − 1

h
(
c2

c1
)3

⎞
⎟⎟⎟⎟⎟⎠


 �� 
F2

⎛
⎜⎜⎝

e2
v2
a2
t2

⎞
⎟⎟⎠ + . . .

+

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 0
1

τ0c1
(
c2

c1
)M

0 0 0 − 1

h
(
c2

c1
)M+1

⎞
⎟⎟⎟⎟⎟⎠


 �� 
FM

⎛
⎜⎜⎝

eM

vM

aM

tM

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
0
0
1
h

⎞
⎟⎟⎠


 �� 
B0

ur .

(20)

The coefficients c2
c1

,
�

c2
c1

�2
, . . .,

�
c2
c1

�M
arise from the bidirec-

tional interconnection (12). To complete the analysis, let us
define the platoon state υpl = (υT

0 υT
1 . . . υT

M )T , the platoon
output ypl = (a0 a1 . . . aM )T and write (11)-(20) in the form

υ̇pl = A plυpl + Bplur

ypl = Cplυpl (21)

A pl =

⎛
⎜⎜⎜⎜⎜⎝

F0 F1 F2 . . . FM−1 FM

A−1 A0 A1 . . . AM−2 AM−1
0 A−1 A0 . . . AM−3 AM−2
...

...
...

. . .
...

0 0 0 . . . E−1 E0

⎞
⎟⎟⎟⎟⎟⎠

Bpl =

⎛
⎜⎜⎜⎝

B0
0
...
0

⎞
⎟⎟⎟⎠ , Cpl =

⎛
⎜⎜⎜⎝

C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

⎞
⎟⎟⎟⎠

and C = (0 0 1 0). Let us denote with Gi,r (s), i ∈ SM ∪ {0},
the transfer functions from ur to ai , calculated from (21). The
following notion of string stability is proposed:
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Definition 1: The platoon represented by (11)-(20) (or
equivalently (21)) is string stable if Gi,r (s) is stable and

��Gi+1,r ( jω)
�� ≤ ��Gi,r ( jω)

�� , ∀ω, 0 ≤ i ≤ M (22)

where |·| indicates the magnitude of the transfer function.
Remark 2: Similarly to [3], (22) implies attenuation of

exogenous effects throughout the platoon: however, the analy-
sis (11)-(20) leading to (21)-(22) extends the approach in [3],
as it is valid for both unidirectional and bidirectional cases.

C. Engine Heterogeneities

Having defined string stability for a bidirectional homoge-
neous platoon, let us see how to handle heterogeneity in τi ,
by representing it as the sum of two terms

τi = τ0 + �τi (23)

where �τi is a perturbation with respect to τ0. Two approaches
can be used to handle �τi , i.e. treating �τi as known (robust
control approach [20]–[23]) or as unknown (adaptive control
approach [25]–[27]). With the intent of pursuing an adaptive
approach, lets us use (23) in the third equation of (4)

ȧi = − 1
τ0

ai + 1
τ0

�
ui + �∗

i φi
�
, , ∀i ∈ SM (24)

where �∗
i = −�τi

τi
is an unknown scalar, and φi = (ui − ai )

is the known scalar regressor. Using (24) in (4), we get

⎛
⎝ėi

v̇i

ȧi

⎞
⎠ =

⎛
⎜⎝

0 −1 −hc1
0 0 1

0 0 − 1

τ0

⎞
⎟⎠

⎛
⎝ei

vi

ai

⎞
⎠ +

⎛
⎝c1

0
0

⎞
⎠ vi−1

+
⎛
⎝c2 hc2

0 0
0 0

⎞
⎠�

vi+1
ai+1

	
+

⎛
⎜⎝

0
0
1

τ0

⎞
⎟⎠ �

ui + �∗
i φi

�
. (25)

Remark 3: As small delays are often modelled as first-order
lag (see e.g. [40, Sect. 6.5]), the time constant τi can
be thought to possibly include engine delay. Assuming
τi to be unknown would then automatically include such
delays. Robust adaptive control approaches as in [28]
can also be adopted to handle delays and unmodelled
dynamics.

III. ENGINE-CONSTRAINED CONTROL

Under the baseline conditions of identical vehicles
(�∗

i = 0), the following CACC control was derived in Sect. II

hc1u̇i,bl = −ui,bl + ξi,bl , ∀i ∈ SM ∪ {0}

ξi,bl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1ur + k pe0 + kdė0

+c2u1,bl + hc2u̇1,bl
i = 0.

kpei + kd ėi + c1ui−1,bl

+c2ui+1,bl + hc2u̇i+1,bl
i ∈ SM \{M}

k peM + kd ėM + uM−1,bl i = M.

(26)

With the purpose of using the homogeneous condition as
reference dynamics to which the heterogeneous platoon should
converge, define ∀i ∈ SM \ {M} (i = M omitted for brevity)

⎛
⎜⎜⎝

ėi,m

v̇i,m

ȧi,m

u̇i,m

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 −hc1 0
0 0 1 0

0 0 − 1

τ0

1

τ0
k p

hc1
− kd

hc1
−kd − 1

hc1

⎞
⎟⎟⎟⎟⎟⎠


 �� 
Am

⎛
⎜⎜⎝

ei,m

vi,m

ai,m

ui,m

⎞
⎟⎟⎠


 �� 
xi,m

+

⎛
⎜⎜⎜⎝

c1 c2 hc2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
kd

h

kdc2

hc1

kdc2

c1

1

h

c2

hc1

c2

c1

⎞
⎟⎟⎟⎠


 �� 
Bw

⎛
⎜⎜⎜⎜⎜⎜⎝

vi−1
vi+1
ai+1

ui−1,bl

ui+1,bl

u̇i+1,bl

⎞
⎟⎟⎟⎟⎟⎟⎠


 �� 
wi

(27)

where subscript m stands for model-reference, xi,m is the
reference state and wi contains variables coming from the
actual vehicles in (10): consequently, (27) is in the form

ẋi,m = Am xi,m + Bwwi , ∀i ∈ SM . (28)

Furthermore, the leading vehicle model becomes

⎛
⎜⎜⎝

ė0
v̇0
ȧ0

u̇0,bl

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 1 0

0 0 − 1

τ0

1

τ0
k p

hc1
− kd

hc1
− kd − 1

hc1

⎞
⎟⎟⎟⎟⎟⎠


 �� 
Ar

⎛
⎜⎜⎝

e0
v0
a0

u0,bl

⎞
⎟⎟⎠


 �� 
x0

+

⎛
⎜⎜⎜⎝

c2 hc2 0 0
0 0 0 0
0 0 0 0

kdc2

hc1

kdc2

c1

c2

hc1

c2

c1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

v1
a1

u1,bl

u̇1,bl

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

0
0
0
1

h

⎞
⎟⎟⎟⎠


 �� 
Br

ur .

(29)

Having defined the reference dynamics (29), two questions
are now addressed: introduce adaptation in (26) to handle
heterogeneities (23) (Sect. III.A); modify (26) and (29) to
handle saturation constraints (Sect. III.B).

A. Adaptive CACC Augmentation

The dynamics (28) can used as a reference model for the
uncertain platoon’s dynamics (25). With this scope in mind,
we augment the baseline controller (26) with an adaptive term

ui = ui,bl + ui,ad (30)

Authorized licensed use limited to: University of Groningen. Downloaded on January 05,2022 at 04:37:23 UTC from IEEE Xplore.  Restrictions apply. 



2684 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 5, MAY 2021

where ui,ad is the adaptive augmentation controller (to be
constructed). Replacing (30) into (25) results in

⎛
⎜⎜⎝

ėi

v̇i

ȧi

u̇i,bl

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 −1 −hc1 0
0 0 1 0

0 0 − 1

τ0

1

τ0
k p

hc1
− kd

hc1
−kd − 1

hc1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

ei

vi

ai

ui

⎞
⎟⎟⎠


 �� 
xi

+

⎛
⎜⎜⎜⎜⎝

c1 c2 hc2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
kd

h

kdc2

hc1

kdc2

c1

1

h

c2

hc1

c2

c1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vi−1

vi+1

ai+1

ui−1,bl

ui+1,bl

u̇i+1,bl

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0
0
1

τ0
0

⎞
⎟⎟⎟⎟⎠


 �� 
Bu

�
ui,ad + �∗

i φi
�
, ∀i ∈ SM (31)

Note that the leading vehicle’s model is still as in (29).
Define the adaptive augmentation control input to estimate and
compensate for the unknown term �∗

i φi as

ui,ad = −�̂iφi (32)

where �̂i is the estimate of �∗
i . Replacing (32) in (31) gives

ẋi = Am xi + Bwwi − Bu(�̂i − �∗
i
 �� 

�̃i

)T φi (33)

where �̃i is the parameter estimation’s error vector. Defining
the state tracking error as x̃i = xi − xi,m we obtain the
following state error dynamics

˙̃xi = Am x̃i + Bu�̃iφi (34)

Remark 4: Each vehicle can calculate x̃i by implementing
a copy of the reference dynamics (27): then, the objective of
each vehicle is to drive x̃i to zero. Upon convergence of x̃i to
zero, the heterogeneous platoon converges to the behavior of a
homogeneous platoon resulting from connecting the reference
dynamics (27) in a platoon (Fig. 2).

B. Saturated Case

Let us now modify the reference dynamics (27) to handle
saturation constraints: first, let us define ξi,m = k pei +
kd ėi + c1 ui−1,m + c2 ui+1,m + hc2u̇i+1,m (similarly to (26)).

Then

hc1u̇i,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ui,m = umax,m and

−ui,m + ξi,m ≥ 0

−ui,m + ξi,m if umin,m < ui,m < umax,m

or ui,m = umax,m and

−ui,m + ξi,m < 0

or ui,m = umin,m and

−ui,m + ξi,m > 0

0 if ui,m = umin,m and

−ui,m + ξi,m ≤ 0

(35)

where umin,m and umax,m are the saturation levels of the ref-
erence model to be designed. Such levels should be designed
such that the vehicles in the platoon do not hit their saturation
bounds, i.e. the reference model is not too demanding.

Remark 5: Note that (35) provides an anti-windup action,
as u̇i,m = 0 whenever the saturation bounds are hit. That is,
ui,m stays at the saturation level (umax,m or umin,m ), and will
immediately exit the saturation whenever −ui,m + ξi,m < 0 or
−ui,m + ξi,m > 0.

When saturation is hit, we find γ such that −γ ui,m +k pei +
kd ėi + c1 ui−1,m + c2 ui+1,m + hc2u̇i+1,m = 0. This leads to
the saturated dynamics, ∀i ∈ SM

⎛
⎜⎜⎝

ėi,m

v̇i,m

ȧi,m

u̇i,m

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 − 1 − hc1 0
0 0 1 0

0 0 − 1

τ0

1

τ0
k p

hc1
− kd

hc1
− kd − γ

hc1

⎞
⎟⎟⎟⎟⎟⎠


 �� 
Aγ

m

⎛
⎜⎜⎝

ei,m

vi,m

ai,m

ui,m

⎞
⎟⎟⎠


 �� 
xi,m

+

⎛
⎜⎜⎜⎝

c1 c2 hc2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
kd

h

kdc2

hc1

kdc2

c1

1

h

c2

hc1

c2

c1

⎞
⎟⎟⎟⎠


 �� 
Bw

⎛
⎜⎜⎜⎜⎜⎜⎝

vi−1
vi+1
ai+1

ubl,i−1
ubl,i+1
u̇i+1

⎞
⎟⎟⎟⎟⎟⎟⎠


 �� 
wi

(36)

Let us now design umin,m and umax,m . We can prove that
uad,i ∈ [�̄(ui,min − ui,max ), �̄(ui,max − ui,min )], where �̄ =
max(

���i,min
�� , ���i,max

��), with �i,min and �i,max the minimum
and maximum bounds on −�τi/τi , and ui,min and ui,max the
actual saturation levels of vehicle i . We used the fact that
φi = sat (ui ) − ai belongs to [ui,min − ui,max ,ui,max − ui,min ]
by exploiting the properties of a first order system with input
sat(ui ) and output ai . From these bounds we have

umin,m + �̄(ui,min − ui,max ) ≤ ui

≤ umax,m + �̄(ui,max − ui,min ) (37)
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Fig. 2. Homogenization of a heterogeneous platoon.

where the result in [25] that ui,bl will converge to ui,m has
been used. From (37), one can design umin,m and umax,m

umin,m ≥ max
i

[ui,min − �̄(ui,min − ui,max )] (38)

umax,m ≤ min
i

[ui,max − �̄(ui,max − ui,min )] (39)

Remark 6: In line with [18], [19], the bounds (38)-(39)
avoid saturation at the price of reducing performance. To
select �̄, a bound to the uncertainty −�τi/τi must be known:
the more the heterogeneity of the platoon, the tighter umin,m

and umax,m . If the platoon is homogeneous, (38)-(39) become
umin,m ≥ ui,min and umax,m ≤ ui,max , i.e. the bounds of the
reference model can be the same as the bounds of the vehicles.

Remark 7: The bounds in (37) are based on the worst-case
uncertainty for �i , and on the worst-case excursion for φi =
sat (ui ) − ai . To reduce conservativeness, an efficiency factor
can be multiplied to �̄ in (37). In simulations, we verified that
an efficiency factor of 0.25 ∼ 0.5 reduces conservativeness
while still respecting all saturation bounds.

The dynamics of the vehicle with saturation become

ẋi = Aγ
m xi + Bwwi + Bu[sat (ui,ad) + �∗φi ] (40)

and

hc1u̇i,bl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ ui,bl + ξi,bl if ui,m = umax,m and

−ui,m + ξi,m ≥ 0

−ui,bl + ξi,bl if umin,m < ui,m < umax,m

or ui,m = umax,m and

−ui,m + ξi,m < 0

or ui,m = umin,m and

−ui,m + ξi,m > 0

−γ ui,bl + ξi,bl if ui,m = umin,m and

−ui,m + ξi,m ≤ 0

(41)

The last equation implies that ui,bl follows a similar law as
ui,m : furthermore, when ui,bl → ui,m the two inputs will

saturate synchronously. We obtain the dynamics

˙̃xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aγ
m x̃i + Bu�̃iφi if ui,m = umax,m and

−ui,m + ξi,m ≥ 0

Am x̃i + Bu�̃iφi if umin,m < ui,m < umax,m

or ui,m = umax,m and

−ui,m + ξi,m < 0

or ui,m = umin,m and

−ui,m + ξi,m > 0

Aγ
m x̃i + Bu�̃iφi if ui,m = umin,m and

−ui,m + ξi,m ≤ 0

(42)

from which the following stability result can be stated.
Theorem 1: Consider the uncertain system dynamics

in (34), and the reference model dynamics in (28) with
bounded external reference input wi . Then for any positive
constant 
� the adaptive input, ∀i ∈ SM ,

ui,ad = −�̂iφi
˙̂
�i = 
�φi x̃i Pm Bu (43)

regulates the tracking error asymptotically to zero, i.e.
limt→∞ xi (t) − xi,m(t) = 0, ∀i ∈ SM . In (43) Pm represents
a common symmetric positive-definite matrix satisfying

AT
m Pm + Pm Am < −Qm (44)

Aγ T
m Pm + Pm Aγ

m < −Qm (45)

with Qm = QT
m > 0 a design matrix.

Proof: See Appendix A.
Remark 8: From (44) and (45) it can be seen that stability

relies on a common Lyapunov function between Am and Aγ
m

(i.e. between the unsaturated and saturated dynamics). Such
common Lyapunov function allows implies that Aγ

m (which
can be eventually time-varying) should be close enough to
Am for such a Lyapunov function to exist. This is the case if
the formation errors ei are kept small, which is consistent with
the studies [18], [19] (large spacing errors cannot be handled
as they cause hitting the saturation bounds).

IV. SIMULATIONS

To validate the theoretical analysis, we consider an
input-saturated heterogeneous platoon with M = 5.

A. Unidirectional vs. Bidirectional String Stability

To study string stability, we calculate
��Gi,r ( jω)

�� with τ0 =
0.6, h = 0.7, kp = 0.2 and kd = 0.7 for both the unidirectional
(c1 = 1, c2 = 0) and the bidirectional case (c1 = c2 = 0.5).
For the unidirectional case, Fig. 3a shows that the effect of
an exogenous disturbance in ur is attenuated throughout the
platoon (being

��Gi,r ( jω)
�� ≤ 1 at each frequency). To show

that a bidirectional CACC may not retain string stability unless
carefully designed, we consider two possible bidirectional
CACC implementations, depending on the weight of the
look-ahead error of the last vehicle. In the first implementation,
such look-ahead error is weighted as 1 (as in (14)): this results
in Fig. 3b. In the second implementation, it is weighted as 0.5
(as the look-ahead errors of the other vehicles), i.e.

c1hu̇M,bl = −uM,bl + c1(k pe1,M + kde2,M ) + c1uM−1,bl .

Authorized licensed use limited to: University of Groningen. Downloaded on January 05,2022 at 04:37:23 UTC from IEEE Xplore.  Restrictions apply. 



2686 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 5, MAY 2021

Fig. 3. String stability checks for unidirectional and bidirectional cases.

Fig. 4. No saturation with baseline control.

This results in Fig. 3c. Clearly, the second implementation
is not beneficial for string stability, as amplifications up to
3% (0.25 dB) occur at low frequencies (<0.2 rad/s) among
adjacent vehicles. The first implementation of bidirectional
CACC is to be preferred (and it is used in the forthcoming
simulations) as it attains analogous string stability proper-
ties well known for unidirectional CACC [3]. This validates
the effectiveness of the string stability analysis proposed
in (11)-(20), whose main benefit is to address in a unified

Fig. 5. Saturation with baseline control.

framework both the unidirectional and bidirectional cases: this
way, one can easily verify how far (in terms of string stability)
a bidirectional CACC is as compared to a unidirectional
CACC.

B. Unsaturated vs. Saturated Cohesiveness

Having defined homogeneous string stable conditions, let us
study the heterogeneous saturated case. To test the algorithms
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Fig. 6. Saturation with proposed control.

TABLE I

PLATOON PARAMETERS, M = 5, h = 0.7S

in a realistic setting, in all simulations we consider a commu-
nication delay of 0.1s and an engine delay of 0.2s, values in
line with CACC literature [5], [6]. Table I presents the pla-
toon’s characteristics, with the true values of the uncertainties
�∗

i , ∀i ∈ SM , unknown to the designer. However, we assume
to know the upper and lower bound of �∗

i , be used to design
umin,m and umax,m . Specifically, �̄ = 0.333 and the worst case
saturation bounds are umin,m = −1 + 0.333 ∗ 2 = −0.333 and
umax,m = 1 − 0.333 ∗2 = 0.333. After including an efficiency
factor of 0.25 as explained in Remark 7, we obtain the bounds
−0.83 and 0.83. The adaptive input (43) is designed using (44)
with Qm =5 I and 
� = 80.

Cohesiveness is tested under acceleration-deceleration phase
for the leading vehicle, for three unidirectional scenarios:

• No saturation with baseline (nonadaptive) control, i.e. the
standard CACC [3]. This scenario shows cohesiveness in
the ideal unconstrained situation;

Fig. 7. Extreme scenario under unidirectional and bidirectional interaction.

• Saturation with baseline (nonadaptive) control, to show
loss of cohesiveness due to engine constraints;

• Saturation with proposed adaptive control, to show how
cohesiveness is recovered by the proposed mechanism.

In view of Remark 1, let us plot the velocity responses
as a measure of cohesiveness (regulating the relative veloc-
ities close to zero keeps the platoon cohesive), while the
inter-vehicle distances (calculated with respect to the preced-
ing vehicle) report whether collisions among vehicles occur.
Fig. 4a shows the velocity response in case no saturation is
present: all vehicles follow the leader velocity, which implies
platoon cohesiveness. Also, the absence of engine constraints
lets all vehicles follow the leader acceleration, see Fig. 4b.

In Fig. 5a (saturation with the same baseline control),
vehicle 3 is incapable of following the preceding vehicle
speed, i.e. cohesiveness is lost. Vehicles 4 and 5 follow
vehicle 3 which lost cohesiveness. The triangular shape of
the velocity of vehicle 3 results from acceleration/deceleration
limits (Fig. 5b), which eventually lead to collision at around
80 seconds.

Fig. 6a results from the proposed CACC: all vehicles main-
tain cohesiveness. Because of the engine limits, cohesiveness
is naturally maintained at the price of reducing performance
(the leading vehicle reaches a maximum speed of 30 m/s
instead of 44 m/s). This can be clearly seen from Fig. 6b
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Fig. 8. Extreme scenarios under unidirectional (solid) and bidirectional
(dash-dot) interaction.

where, as compared to Fig. 4b the high acceleration and
deceleration peaks are chopped by the proposed mechanism.

C. Unidirectional vs. Bidirectional Cohesiveness

To highlight some limits of unidirectional interaction,
an extreme scenario is designed as follows: we take the
saturation levels to be the same for all vehicles, i.e. umin,i =
−1, umax,i = 1, resulting in umin,m = −1, umax,m = 1
(cf. Remark 4). Then, when the platoon is at maximum
acceleration, we intentionally provoke vehicle 3 to “slip back”
impulsively (this can be imagined as vehicle 3 facing a bump
or a wet spot on the road): the slip back causes a positive
impulse in the distance between vehicle 2 and 3 and a negative
impulse in the distance between vehicle 3 and 4. Two scenarios
are considered for the proposed adaptive strategy:

• Saturation with unidirectional interaction. This scenario
is meant to show that unidirectional control may lose
cohesiveness in this extreme case.

• Saturation with bidirectional interaction. This scenario
is meant to show that bidirectional control may recover
cohesiveness also in this extreme case.

In the unidirectional case, the gap between vehicles 2 and
3 cannot be closed as both vehicles keep maximum accel-
eration (cf. the positive constant gap in Fig. 7a). In addition,

Fig. 9. Extreme scenarios without delays under unidirectional and bidirec-
tional interaction.

the negative impulse between vehicles 3 and 4 causes vehicle 4
to slow down without catching up anymore (cf. the negative
impulse in Fig. 7a becoming positive and increasing). In fact,
due to unidirectionality, vehicle 3 keeps maximum acceleration
despite the gap with vehicle 4, as it only cares about spacing
with vehicle 2. Being vehicle 3 at maximum acceleration
with higher velocity than vehicle 4, the spacing between
vehicles 3 and 4 keeps on increasing.

On the other hand, the gap is closed in Fig. 7b: thanks to
bidirectional interaction, vehicles consider both the look-ahead
and look-back errors. As a result, vehicle 2 and vehicle 1 can
slow down a bit, in order for vehicle 3 to close the gap:
then, they can reach maximum acceleration again. Fig. 8a
reports the inter-vehicle distances and Fig. 8b reports the
distances with respect to the leading vehicle. Fig. 8a shows
that bidirectionality leads to shorter inter-vehicle distances, i.e.
the platoon is more cohesive (for better readability, only the
inter-vehicle distances for vehicles 2, 3 and 4 are reported).
Fig. 8b further shows the improved cohesiveness due to bidi-
rectionality. Notice that, in the bidirectional case, the leading
vehicle can decelerate a bit to allow vehicle 1 to keep the
formation, even before the disturbance acts on vehicle 3.

To highlight the effect of communication and engine delays,
let us reproduce the simulations of Fig. 7 without any delay.
The results are in Figs. 9a and 9b in terms of spacing errors and
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Fig. 10. Additional acceleration-deceleration scenarios under unidirectional and under bidirectional interaction.

input responses. As compared to the simulations with delays
in Figs. 7a and 7b, it can be seen that delays introduce small
oscillations when converging to the steady-state input, and
slightly longer settling time. It is expected that the presence
of delay reduces performance of a controller [40, Sect. 7.4]:
yet, the proposed methodology still performs satisfactorily in
the presence of such delays.

In the simulations of Figs. 7-9 the leading vehicle always
accelerates: this is an extreme scenario designed to test
cohesiveness in the most challenging conditions. When the
leading vehicle has deceleration phases, it is clear that such
phases will help cohesiveness. To this purpose, let us go back
to the acceleration-deceleration scenarios of Sect. IV.B, but
again intentionally provoking vehicle 3 to “slip back”. The
difference between the unidirectional and bidirectional case
can be seen in Fig. 10a and Fig. 10b. Unidirectional interaction
creates larger errors: it is only the deceleration phase that helps
rejecting the disturbance and prevents loss of cohesiveness.
Fig. 10c further highlights that the unidirectional case would
lose cohesiveness if the leading vehicle did not decelerate.
Again, vehicle 0 decelerates a bit in the bidirectional case
to keep the platoon more cohesive, i.e. in Fig. 10c vehicle
1 stays a bit closer to vehicle 0 in the bidirectional case. These
simulations highlight the benefits of bidirectional interaction
in keeping the formation at all time steps.

V. CONCLUSION

Adaptive platooning is effective in stabilizing platoons with
non-identical and uncertain vehicle dynamics (heterogeneous
platoons). In this work we have addressed and solved two
aspects usually neglected in adaptive platooning strategies:
handling saturation (i.e. engine constraints) in such a way not
to lose cohesiveness; handling bidirectional interaction (with
front and rear vehicle) in such a way not to lose string stability.
We have proposed a mechanism based on making the reference
dynamics not too demanding, by applying a properly designed
saturation action. The mechanism can retain cohesiveness
while handling bidirectional interaction in a string stable way.

In future work, it would be relevant to adaptively learn [41]
the best homogeneous dynamics that might lead to the best
platooning performance, e.g. induce less engine constraints.

APPENDIX: PROOF OF THEOREM 1

Define a radially unbounded quadratic (and common) Lya-
punov candidate function as:

Vi (x̃i ,��i ) = x̃ T
i Pm x̃i + �̃2

i 

−1
� (46)

where 
� > 0 is the gain matrix containing the rates of
adaptation, and Pm = PT

m > 0 is a symmetric positive-definite
solution to (44). Taking the time derivative of Vi (x̃i , �̃i ) and
using the error dynamics in (42) results in:
V̇i (x̃i ,��i ) ≤ −x̃ T

i Qm x̃i − 2x̃ T
i Pm Bu�̃iφi + 2(�̃i


−1
�

˙̂�i )

Moreover using the identity aT b = baT results in:
V̇i ≤ −x̃ T

i Qm x̃i + 2(�̃i {
−1
�

˙̂
�i − φi x̃

T
i Pm Bu}) (47)

Choosing the adaptive law as in (43) reduces (47) to

V̇i (x̃i , �̃i ) ≤ −x̃ T
i Qm x̃i ≤ 0 (48)

which proves the uniform ultimate boundedness of (x̃i , �̃i ).
Furthermore, it can be concluded from (48) that x̃i ∈ L2.
In addition, since wi is bounded, then xi,m ∈ L∞ and
consequently, xi ∈ L∞ and ui,bl ∈ L∞. Moreover, since
�∗

i is constant and �̃i is bounded, then the estimated value
is also bounded, �̂i ∈ L∞. Since (xi , ui,bl ) ∈ L∞ and the
components of the regressor vector φi are locally Lipschitz
continuous, then the regressor’s components are bounded.
Therefore, ui ∈ L∞ and ẋi ∈ L∞. Hence, ˙̃xi ∈ L∞, which
implies that V̈i ∈ L∞. Thus, V̇i is a uniformly continuous
function of time. In addition, since Vi has a lower bound,
V̇i ≤ 0, and V̇i is uniformly continuous, then by Barbalat’s
Lemma, Vi tends to a limit, while its derivative tends to
zero. Hence, the tracking error x̃i tends asymptotically to
zero as t → ∞. Because we have used a common Lyapunov
function (46) and (44) it is possible to prove that switching to
different error dynamics in (42) does not destroy stability [11].
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