168 research outputs found

    Heterogeneous 360 Degree Videos in Metaverse: Differentiated Reinforcement Learning Approaches

    Full text link
    Advanced video technologies are driving the development of the futuristic Metaverse, which aims to connect users from anywhere and anytime. As such, the use cases for users will be much more diverse, leading to a mix of 360-degree videos with two types: non-VR and VR 360-degree videos. This paper presents a novel Quality of Service model for heterogeneous 360-degree videos with different requirements for frame rates and cybersickness. We propose a frame-slotted structure and conduct frame-wise optimization using self-designed differentiated deep reinforcement learning algorithms. Specifically, we design two structures, Separate Input Differentiated Output (SIDO) and Merged Input Differentiated Output (MIDO), for this heterogeneous scenario. We also conduct comprehensive experiments to demonstrate their effectiveness.Comment: This paper appears in IEEE Global Communications Conference (GLOBECOM) 202

    One-Shot Relational Learning for Knowledge Graphs

    Full text link
    Knowledge graphs (KGs) are the key components of various natural language processing applications. To further expand KGs' coverage, previous studies on knowledge graph completion usually require a large number of training instances for each relation. However, we observe that long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge extracted by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.Comment: EMNLP 201

    Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation Models: A Multi-Agent Deep Reinforcement Learning Approach

    Full text link
    The efficient deployment and fine-tuning of foundation models are pivotal in contemporary artificial intelligence. In this study, we present a groundbreaking paradigm integrating Mobile Edge Computing (MEC) with foundation models, specifically designed to enhance local task performance on user equipment (UE). Central to our approach is the innovative Emulator-Adapter architecture, segmenting the foundation model into two cohesive modules. This design not only conserves computational resources but also ensures adaptability and fine-tuning efficiency for downstream tasks. Additionally, we introduce an advanced resource allocation mechanism that is fine-tuned to the needs of the Emulator-Adapter structure in decentralized settings. To address the challenges presented by this system, we employ a hybrid multi-agent Deep Reinforcement Learning (DRL) strategy, adept at handling mixed discrete-continuous action spaces, ensuring dynamic and optimal resource allocations. Our comprehensive simulations and validations underscore the practical viability of our approach, demonstrating its robustness, efficiency, and scalability. Collectively, this work offers a fresh perspective on deploying foundation models and balancing computational efficiency with task proficiency

    Automated Testing and Improvement of Named Entity Recognition Systems

    Full text link
    Named entity recognition (NER) systems have seen rapid progress in recent years due to the development of deep neural networks. These systems are widely used in various natural language processing applications, such as information extraction, question answering, and sentiment analysis. However, the complexity and intractability of deep neural networks can make NER systems unreliable in certain circumstances, resulting in incorrect predictions. For example, NER systems may misidentify female names as chemicals or fail to recognize the names of minority groups, leading to user dissatisfaction. To tackle this problem, we introduce TIN, a novel, widely applicable approach for automatically testing and repairing various NER systems. The key idea for automated testing is that the NER predictions of the same named entities under similar contexts should be identical. The core idea for automated repairing is that similar named entities should have the same NER prediction under the same context. We use TIN to test two SOTA NER models and two commercial NER APIs, i.e., Azure NER and AWS NER. We manually verify 784 of the suspicious issues reported by TIN and find that 702 are erroneous issues, leading to high precision (85.0%-93.4%) across four categories of NER errors: omission, over-labeling, incorrect category, and range error. For automated repairing, TIN achieves a high error reduction rate (26.8%-50.6%) over the four systems under test, which successfully repairs 1,056 out of the 1,877 reported NER errors.Comment: Accepted by ESEC/FSE'2

    CIC Rearrangement Sarcoma: A Case Report and Literature Review

    Get PDF
    Background: CIC-rearranged sarcoma (capicua transcriptional repressor- rearranged sarcoma, CRS) is a rare type of undifferentiated small round-cell sarcoma. There are few reported cases of CRS; in 2017, 115 cases were reported abroad and 10 cases were reported in China. Case summary: The patient is a 41-year-old male who presented with a mass in the left lumbar region for more than 1 month. Tumor excision was performed at another hospital. Pathology results indicated CRS. PET-CT indicated changes in the left lumbar region, and postoperative tissue repair changes were considered. However, combined with the medical history and imaging features, the clinical diagnosis was considered recurrence of tumor in the left lumbar region. Postoperatively, the patient was transferred to the burn department for pedicled skin-flap repair. Conclusion: CRS is rare, and the prognosis of these patients is poor. Surgical resection of the lesion is the first choice for patients without metastasis

    Towards Mitigating Spurious Correlations in the Wild: A Benchmark and a more Realistic Dataset

    Full text link
    Deep neural networks often exploit non-predictive features that are spuriously correlated with class labels, leading to poor performance on groups of examples without such features. Despite the growing body of recent works on remedying spurious correlations, the lack of a standardized benchmark hinders reproducible evaluation and comparison of the proposed solutions. To address this, we present SpuCo, a python package with modular implementations of state-of-the-art solutions enabling easy and reproducible evaluation of current methods. Using SpuCo, we demonstrate the limitations of existing datasets and evaluation schemes in validating the learning of predictive features over spurious ones. To overcome these limitations, we propose two new vision datasets: (1) SpuCoMNIST, a synthetic dataset that enables simulating the effect of real world data properties e.g. difficulty of learning spurious feature, as well as noise in the labels and features; (2) SpuCoAnimals, a large-scale dataset curated from ImageNet that captures spurious correlations in the wild much more closely than existing datasets. These contributions highlight the shortcomings of current methods and provide a direction for future research in tackling spurious correlations. SpuCo, containing the benchmark and datasets, can be found at https://github.com/BigML-CS-UCLA/SpuCo, with detailed documentation available at https://spuco.readthedocs.io/en/latest/.Comment: Package: https://github.com/BigML-CS-UCLA/SpuC
    corecore