3,738 research outputs found

    Experimental observation of negative differential resistance from an InAs/GaSb interface

    Get PDF
    We have observed negative differential resistance at room temperature from devices consisting of a single interface between n-type InAs and p-type GaSb. InAs and GaSb have a type II staggered band alignment; hence, the negative differential resistance arises from the same mechanism as in a p+-n+ tunnel diode. Room-temperature peak current densities of 8.2×10^4 A/cm^2 and 4.2×10^4 A/cm^2 were measured for structures with and without undoped spacer layers at the heterointerface, respectively

    Band structure effects in interband tunnel devices

    Get PDF
    We report on a calculation of transport in InAs/GaSb/AlSb-based interband tunnel structures using a realistic band structure model. The results are compared with calculations using a two-band model which includes only the lowest conduction band and the light-hole band. We find that for device structures containing GaSb quantum wells, the inclusion of heavy-hole states can introduce additional transmission resonances and substantial hole-mixing effects. These effects are found to have a significant influence on the current–voltage characteristics of interband devices

    The class I PI3K/Akt pathway is critical for cancer cell survival in dogs and offers an opportunity for therapeutic intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Using novel small-molecular inhibitors, we explored the feasibility of the class I PI3K/Akt/mTORC1 signaling pathway as a therapeutic target in canine oncology either by using pathway inhibitors alone, in combination or combined with conventional chemotherapeutic drugs <it>in vitro</it>.</p> <p>Results</p> <p>We demonstrate that growth and survival of the cell lines tested are predominantly dependent on class I PI3K/Akt signaling rather than mTORC1 signaling. In addition, the newly developed inhibitors ZSTK474 and KP372-1 which selectively target pan-class I PI3K and Akt, respectively, and Rapamycin which has been well-established as highly specific mTOR inhibitor, decrease viability of canine cancer cell lines. All inhibitors demonstrated inhibition of phosphorylation of pathway members. Annexin V staining demonstrated that KP372-1 is a potent inducer of apoptosis whereas ZSTK474 and Rapamycin are weaker inducers of apoptosis. Simultaneous inhibition of class I PI3K and mTORC1 by ZSTK474 combined with Rapamycin additively or synergistically reduced cell viability whereas responses to the PI3K pathway inhibitors in combination with conventional drug Doxorubicin were cell line-dependent.</p> <p>Conclusion</p> <p>This study highlighted the importance of class I PI3K/Akt axis signaling in canine tumour cells and identifies it as a promising therapeutic target.</p

    Phenomenological Scaling of Rapidity Dependence for Anisotropic Flows in 25 MeV/nucleon Ca + Ca by Quantum Molecular Dynamics Model

    Full text link
    Anisotropic flows (v1v_1, v2v_2, v3v_3 and v4v_4) of light fragments up till the mass number 4 as a function of rapidity have been studied for 25 MeV/nucleon 40^{40}Ca + 40^{40}Ca at large impact parameters by Quantum Molecular Dynamics model. A phenomenological scaling behavior of rapidity dependent flow parameters vnv_n (n = 1, 2, 3 and 4) has been found as a function of mass number plus a constant term, which may arise from the interplay of collective and random motions. In addition, v4/v22v_4/{v_2}^2 keeps almost independent of rapidity and remains a rough constant of 1/2 for all light fragments.Comment: 4 pages, 5 figure

    Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions

    Full text link
    Elliptic flow (v2v_2) and hexadecupole flow (v4v_4) of light clusters have been studied in details for 25 MeV/nucleon 86^{86}Kr + 124^{124}Sn at large impact parameters by Quantum Molecular Dynamics model with different potential parameters. Four parameter sets which include soft or hard equation of state (EOS) with/without symmetry energy term are used. Both number-of-nucleon (AA) scaling of the elliptic flow versus transverse momentum (ptp_t) and the scaling of v4/A2v_4/A^{2} versus (pt/A)2(p_t/A)^2 have been demonstrated for the light clusters in all above calculation conditions. It was also found that the ratio of v4/v22v_4/{v_2}^2 keeps a constant of 1/2 which is independent of ptp_t for all the light fragments. By comparisons among different combinations of EOS and symmetry potential term, the results show that the above scaling behaviors are solid which do not depend the details of potential, while the strength of flows is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure

    Modulated Entanglement Evolution Via Correlated Noises

    Full text link
    We study entanglement dynamics in the presence of correlated environmental noises. Specifically, we investigate the quantum entanglement dynamics of two spins in the presence of correlated classical white noises, deriving Markov master equation and obtaining explicit solutions for several interesting classes of initial states including Bell states and X form density matrices. We show how entanglement can be enhanced or reduced by the correlation between the two participating noises.Comment: 9 pages, 4 figures. To be published in Quantum Information Processing, special issue on Quantum Decoherence and Entanglemen

    Modeling of novel heterojunction tunnel structures

    Get PDF
    We have implemented a simple model that allows realistic yet rapid simulation of conventional as well as interband resonant tunneling devices. Using this model we have studied GaAs/AlAs asymmetric triple barrier structures and found that coherence between the quasibound states in the two quantum wells should be observable in the I–V characteristics of the devices. We have also examined InAs–GaSb–InAs broken-gap interband tunnel devices and found that, despite the absence of classically forbidden barrier regions, a resonant tunneling process is involved in producing the observed negative differential resistance. Furthermore, we have found that maximum peak current densities should be found in devices with GaSb layer thicknesses corresponding to a single, rather than a multiple transmission resonance peak in the broken-gap region
    • …
    corecore