72 research outputs found

    Understanding the role of the CB1 toggle switch in interaction networks using molecular dynamics simulation

    Get PDF
    The cannabinoid receptor 1 (CB1) is a class A G-protein coupled receptor (GPCR) that can exert various effects on the human body through the endocannabinoid system. Understanding CB1 activation has many benefits for the medical use of cannabinoids. A previous study reported that CB1 has two notable residues referred to as the toggle switch, F3.36 and W6.48, which are important for its activation mechanism. We performed a molecular dynamics simulation with a mutation in the toggle switch to examine its role in active and inactive states. We also examined structural changes, the residue–residue interaction network, and the interaction network among helices and loops of wildtype and mutant CB1 for both activation states. As a result, we found that the energetic changes in the hydrogen-bond network of the Na+ pocket, extracellular N-terminus–TM2–ECL1–TM3 interface including D2.63–K3.28 salt-bridge, and extracellular ECL2–TM5–ECL3–TM6 interface directly linked to the toggle switch contribute to the stability of CB1 by the broken aromatic interaction of the toggle switch. It makes the conformation of inactive CB1 receptor to be unstable. Our study explained the role of the toggle switch regarding the energetic interactions related to the Na+ pocket and extracellular loop interfaces, which could contribute to a better understanding of the activation mechanism of CB1. © 2021, The Author(s).1

    Effect of GCSB-5, a Herbal Formulation, on Monosodium Iodoacetate-Induced Osteoarthritis in Rats

    Get PDF
    Therapeutic effects of GCSB-5 on osteoarthritis were measured by the amount of glycosaminoglycan in rabbit articular cartilage explants in vitro, in experimental osteoarthritis induced by intra-articular injection of monoiodoacetate in rats in vivo. GCSB-5 was orally administered for 28 days. In vitro, GCSB-5 inhibited proteoglycan degradation. GCSB-5 significantly suppressed the histological changes in monoiodoacetate-induced osteoarthritis. Matrix metalloproteinase (MMP) activity, as well as, the levels of serum tumor necrosis factor-α, cyclooxygenase-2, inducible nitric oxide synthase protein, and mRNA expressions were attenuated by GCSB-5, whereas the level of interleukin-10 was potentiated. By GCSB-5, the level of nuclear factor-κB p65 protein expression was significantly attenuated but, on the other hand, the level of inhibitor of κB-α protein expression was increased. These results indicate that GCSB-5 is a potential therapeutic agent for the protection of articular cartilage against progression of osteoarthritis through inhibition of MMPs activity, inflammatory mediators, and NF-κB activation

    Galanin-expressing GABA neurons in the lateral hypothalamus modulate food reward and noncompulsive locomotion

    Get PDF
    © 2017 the authors. The lateral hypothalamus (LHA) integrates reward and appetitive behavior and is composed of many overlapping neuronal populations. Recent studies associated LHA GABAergic neurons (LHAGABA), which densely innervate the ventral tegmental area (VTA), with modulation of food reward and consumption; yet, LHAGABA projections to the VTA exclusively modulated food consumption, not reward. We identified a subpopulation of LHA GABA neurons that coexpress the neuropeptide galanin (LHAGal). TheseLHAGal neurons also modulate food reward, but lack direct VTA innervation. We hypothesized that LHAGal neurons may represent a subpopulation of LHAGABA neurons that mediates food reward independent of direct VTA innervation. We used chemogenetic activation of LHAGal or LHAGABA neurons in mice to compare their role in feeding behavior. We further analyzed locomotor behavior to understand how differentia lVTA connectivity and transmitter release in these LHA neurons influences this behavior. LHAGal or LHAGABA neuronal activation both increased operant food-seeking behavior, but only activation of LHAGABA neurons increased overall chow consumption. Additionally, LHAGal or LHAGABA neuronal activation similarly induced locomotor activity, but with striking differences in modality. Activation of LHAGABA neurons induced compulsive-like locomotor behavior; while LHAGal neurons induced locomotor activity without compulsivity. Thus, LHAGal neurons define a subpopulation of LHAGABA neurons without direct VTA innervation that mediate non compulsive food-seeking behavior. We speculate that the striking difference in compulsive-like locomotor behavior is also based on differential VTA innervation. The downstream neural network responsible for this behavior and a potential role for galanin as neuromodulator remains to be identified
    corecore