81 research outputs found
Quantum Hall effect on centimeter scale chemical vapor deposited graphene films
We report observations of well developed half integer quantum Hall effect
(QHE) on mono layer graphene films of 7 mm \times 7 mm in size. The graphene
films are grown by chemical vapor deposition (CVD) on copper, then transferred
to SiO_{2} /Si substrates, with typical carrier mobilities \approx 4000 cm^{2}
/Vs. The large size graphene with excellent quality and electronic homogeneity
demonstrated in this work is promising for graphene-based quantum Hall
resistance standards, and can also facilitate a wide range of experiments on
quantum Hall physics of graphene and practical applications exploiting the
exceptional properties of graphene
Time Frequency Features of Rotor Systems with Slowly Varying Mass
With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed
Study of vibration characteristics of the short thin cylindrical shells and its experiment
The short thin cylindrical shells are important component used in rotating machinery and its function is to connect shafts and transmitted torque. The kind of components is always destroyed due to vibrational state, so it is necessary to further research on the vibration characteristics. In this paper, the vibration characteristics of short thin cylindrical shells are solved using the beam function method, the transfer matrix method and the finite element method respectively. The solving results of three calculating methods are compared by simulation in the clamped-free and clamped-clamped boundary conditions. The simulation results show that the solving results of the transfer matrix method are close to the results of finite element method, but the deviation of the results of the beam functions method is larger than the other two methods. Furthermore, the experiments of the short thin cylindrical shell in the clamped-free boundary conditions are studied. The experimental results verify that the transfer matrix method and the finite element method are applicability to solve the vibration characteristics of the short thin cylindrical shells
Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils
The discovery of graphene, a single layer of covalently bonded carbon atoms,
has attracted intense interests. Initial studies using mechanically exfoliated
graphene unveiled its remarkable electronic, mechanical and thermal properties.
There has been a growing need and rapid development in large-area deposition of
graphene film and its applications. Chemical vapour deposition on copper has
emerged as one of the most promising methods in obtaining large-scale graphene
films with quality comparable to exfoliated graphene. In this chapter, we
review the synthesis and characterizations of graphene grown on copper foil
substrates by atmospheric pressure chemical vapour deposition. We also discuss
potential applications of such large scale synthetic graphene.Comment: 23 pages, 4 figure
Room-temperature Tunable Fano Resonance by Chemical Doping in Few-layer Graphene Synthesized by Chemical Vapor Deposition
A Fano-like phonon resonance is observed in few-layer (~3) graphene at room
temperature using infrared Fourier transform spectroscopy. This Fano resonance
is the manifestation of a strong electron-phonon interaction between the
discrete in-plane lattice vibrational mode and continuum electronic excitations
in graphene. By employing ammonia chemical doping, we have obtained different
Fano line shapes ranging from anti-resonance in hole-doped graphene to
phonon-dominated in n-type graphene. The Fano resonance shows the strongest
interference feature when the Fermi level is located near the Dirac point. The
charged phonon exhibits much-enhanced oscillator strength and experiences a
continuous red shift in frequency as electron density increases. It is
suggested that the phonon couples to different electronic transitions as Fermi
level is tuned by chemical doping.Comment: 14 pages, 4 figure
How Low Nucleation Density of Graphene on CuNi Alloy is Achieved
CuNi alloy foils are demonstrated to be one of the best substrates for synthesizing large area single-crystalline graphene because a very fast growth rate and low nucleation density can be simultaneously achieved. The fast growth rate is understood to be due the abundance of carbon precursor supply, as a result of the high catalytic activity of Ni atoms. However, a theoretical understanding of the low nucleation density remains controversial because it is known that a high carbon precursor concentration on the surface normally leads to a high nucleation density. Here, the graphene nucleation on the CuNi alloy surfaces is systematically explored and it is revealed that: i) carbon atom dissolution into the CuNi alloy passivates the alloy surface, thereby drastically increasing the graphene nucleation barrier; ii) carbon atom diffusion on the CuNi alloy surface is greatly suppressed by the inhomogeneous atomic structure of the surface; and iii) a prominent increase in the rate of carbon diffusion into the bulk occurs when the Ni composition is higher than the percolation threshold. This study reveals the key mechanism for graphene nucleation on CuNi alloy surfaces and provides a guideline for the catalyst design for the synthesis of graphene and other 2D materials
Growth from Below: Bilayer Graphene on Copper by Chemical Vapor Deposition
We evaluate how a second graphene layer forms and grows on Cu foils during
chemical vapor deposition (CVD). Low-energy electron diffraction and microscopy
is used to reveal that the second layer nucleates and grows next to the
substrate, i.e., under a graphene layer. This underlayer mechanism can
facilitate the synthesis of uniform single-layer films but presents challenges
for growing uniform bilayer films by CVD. We also show that the buried and
overlying layers have the same edge termination.Comment: Revised after review. Accepted for publication in New Journal of
Physic
Large-scale Graphitic Thin Films Synthesized on Ni and Transferred to Insulators: Structural and Electronic Properties
We present a comprehensive study of the structural and electronic properties
of ultrathin films containing graphene layers synthesized by chemical vapor
deposition (CVD) based surface segregation on polycrystalline Ni foils then
transferred onto insulating SiO2/Si substrates. Films of size up to several
mm's have been synthesized. Structural characterizations by atomic force
microscopy (AFM), scanning tunneling microscopy (STM), cross-sectional
transmission electron microscopy (XTEM) and Raman spectroscopy confirm that
such large scale graphitic thin films (GTF) contain both thick graphite regions
and thin regions of few layer graphene. The films also contain many wrinkles,
with sharply-bent tips and dislocations revealed by XTEM, yielding insights on
the growth and buckling processes of the GTF. Measurements on mm-scale
back-gated transistor devices fabricated from the transferred GTF show
ambipolar field effect with resistance modulation ~50% and carrier mobilities
reaching ~2000 cm^2/Vs. We also demonstrate quantum transport of carriers with
phase coherence length over 0.2 m from the observation of 2D weak
localization in low temperature magneto-transport measurements. Our results
show that despite the non-uniformity and surface roughness, such large-scale,
flexible thin films can have electronic properties promising for device
applications.Comment: This version (as published) contains additional data, such as cross
sectional TEM image
- …