83 research outputs found

    Evolution of massive binary black holes

    Get PDF
    Since many or most galaxies have central massive black holes (BHs), mergers of galaxies can form massive binary black holes (BBHs). In this paper, we study the evolution of massive BBHs in realistic galaxy models, using a generalization of techniques used to study tidal disruption rates around massive BHs. The evolution of BBHs depends on BH mass ratio and host galaxy type. BBHs with very low mass ratios (say, \la 0.001) are hardly ever formed by mergers of galaxies because the dynamical friction timescale is too long for the smaller BH to sink into the galactic center within a Hubble time. BBHs with moderate mass ratios are most likely to form and survive in spherical or nearly spherical galaxies and in high-luminosity or high-dispersion galaxies; they are most likely to have merged in low-dispersion galaxies (line-of-sight velocity dispersion \la 90 km/s) or in highly flattened or triaxial galaxies. The semimajor axes and orbital periods of surviving BBHs are generally in the range 10^{-3}-10 pc and 10-10^5 yr; and they are larger in high-dispersion galaxies than in low-dispersion galaxies, larger in nearly spherical galaxies than in highly flattened or triaxial galaxies, and larger for BBHs with equal masses than for BBHs with unequal masses. The orbital velocities of surviving BBHs are generally in the range 10^2-10^4 km/s. The methods of detecting surviving BBHs are also discussed. If no evidence of BBHs is found in AGNs, this may be either because gas plays a major role in BBH orbital decay or because nuclear activity switches on soon after a galaxy merger, and ends before the smaller BH has had time to spiral to the center of the galaxy.Comment: 32 pages, including 14 figures, submitted to MNRA

    Kinematics of hypervelocity stars in the triaxial halo of the Milky Way

    Full text link
    Hypervelocity stars (HVSs) ejected by the massive black hole at the Galactic center have unique kinematic properties compared to other halo stars. Their trajectories will deviate from being exactly radial because of the asymmetry of the Milky Way potential produced by the flattened disk and the triaxial dark matter halo, causing a change of angular momentum that can be much larger than the initial small value at injection. We study the kinematics of HVSs and propose an estimator of dark halo triaxiality that is determined only by instantaneous position and velocity vectors of HVSs at large Galactocentric distances (r>~50kpc). We show that, in the case of a substantially triaxial halo, the distribution of deflection angles (the angle between the stellar position and velocity vector) for HVSs on bound orbits is spread uniformly over the range 10--180deg. Future astrometric and deep wide-field surveys should measure the positions and velocities of a significant number of HVSs, and provide useful constraints on the shape of the Galactic dark matter halo.Comment: 10 pages,including 9 figure

    Orbital orientation evolution of massive binary black holes at the centres of non-spherical galaxies

    Full text link
    At the centre of a spherical and kinematically isotropic galaxy, the orientation of a massive binary black hole (BBH) orbit (i.e., the direction of the BBH orbital angular momentum) undergoes a random walk. If the stars in a spherical system have a non-zero total angular momentum, the BBH orbital orientation evolves towards aligning with the total stellar angular momentum direction. In this paper, we show that a triaxial galaxy has an alignment-erasing effect, that is, the alignment of the BBH orientations towards the galaxy rotation axis can be decreased significantly or erased. We also show that in a non-rotating axisymmetric galaxy, the BBH orbital orientation evolves towards the axisymmetric axis and precesses about it in a retrograde direction. Our results provide a step towards understanding the spin orientations of the final merged BH (and hence probable orientation of any jet produced) within its host galaxy, and may help to constrain the recoiling velocity of the merged BH arose from gravitational wave radiation as well.Comment: 16 pages, 9 figures, MNRAS accepte

    The dynamics of Plutinos

    Get PDF
    Plutinos are Kuiper-belt objects that share the 3:2 Neptune resonance with Pluto. The long-term stability of Plutino orbits depends on their eccentricity. Plutinos with eccentricities close to Pluto (fractional eccentricity difference |e-e_p|/e_p<=0.1) can be stable because the longitude difference librates, in a manner similar to the tadpole and horseshoe libration in coorbital satellites. Plutinos with |e-e_p|/e_p>=0.3 can also be stable; the longitude difference circulates and close encounters are possible, but the effects of Pluto are weak because the encounter velocity is high. Orbits with intermediate eccentricity differences are likely to be unstable over the age of the solar system, in the sense that encounters with Pluto drive them out of the 3:2 Neptune resonance and thus into close encounters with Neptune. This mechanism may be a source of Jupiter-family comets.Comment: 14 pages, 4 gif figures, 9 ps figures, Latex. Submitted to A

    Probing baryonic processes and gastrophysics in the formation of the Milky Way dwarf satellites: I. metallicity distribution properties

    Full text link
    In this paper, we study the chemical properties of the stars in the dwarf satellites around the MW-like host galaxies, and explore the possible effects of several baryonic processes, including supernova (SN) feedback, the reionization of the universe and H2_2 cooling, on them and how current and future observations may put some constraints on these processes. We use a semi-analytical model to generate MW-like galaxies, for which a fiducial model can reproduce the luminosity function and the stellar metallicity--stellar mass correlation of the MW dwarfs. Using the simulated MW-like galaxies, we focus on investigating three metallicity properties of their dwarfs: the stellar metallicity--stellar mass correlation of the dwarf population, and the metal-poor and metal-rich tails of the stellar metallicity distribution in individual dwarfs. We find that (1) the slope of the stellar metallicity--stellar mass correlation is sensitive to the SN feedback strength and the reionization epoch; (2) the extension of the metal-rich tails is mainly sensitive to the SN feedback strength; (3) the extension of the metal-poor tails is mainly sensitive to the reionization epoch; (4) none of the three chemical properties are sensitive to the H2_2 cooling process; and (5) comparison of our model results with the current observational slope of the stellar metallicity--stellar mass relation suggests that the local universe is reionized earlier than the cosmic average and local sources may have a significant contribution to the reionization in the local region, and an intermediate to strong SN feedback strength is preferred. Future observations of metal-rich and metal-poor tails of stellar metallicity distributions will put further constraints on the SN feedback and the reionization processes.Comment: 22 pages, 16 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore