74 research outputs found

    Evaluation of wholesale electric power market rules and financial risk management by agent-based simulations

    Get PDF
    As U.S. regional electricity markets continue to refine their market structures, designs and rules of operation in various ways, two critical issues are emerging. First, although much experience has been gained and costly and valuable lessons have been learned, there is still a lack of a systematic platform for evaluation of the impact of a new market design from both engineering and economic points of view. Second, the transition from a monopoly paradigm characterized by a guaranteed rate of return to a competitive market created various unfamiliar financial risks for various market participants, especially for the Investor Owned Utilities (IOUs) and Independent Power Producers (IPPs). This dissertation uses agent-based simulation methods to tackle the market rules evaluation and financial risk management problems. The California energy crisis in 2000-01 showed what could happen to an electricity market if it did not go through a comprehensive and rigorous testing before its implementation. Due to the complexity of the market structure, strategic interaction between the participants, and the underlying physics, it is difficult to fully evaluate the implications of potential changes to market rules. This dissertation presents a flexible and integrative method to assess market designs through agent-based simulations. Realistic simulation scenarios on a 225-bus system are constructed for evaluation of the proposed PJM-like market power mitigation rules of the California electricity market. Simulation results show that in the absence of market power mitigation, generation company (GenCo) agents facilitated by Q-learning are able to exploit the market flaws and make significantly higher profits relative to the competitive benchmark. The incorporation of PJM-like local market power mitigation rules is shown to be effective in suppressing the exercise of market power. The importance of financial risk management is exemplified by the recent financial crisis. In this dissertation, basic financial risk management concepts relevant for wholesale electric power markets are carefully explained and illustrated. In addition, the financial risk management problem in wholesale electric power markets is generalized as a four-stage process. Within the proposed financial risk management framework, the critical problem of financial bilateral contract negotiation is addressed. This dissertation analyzes a financial bilateral contract negotiation process between a generating company and a load-serving entity in a wholesale electric power market with congestion managed by locational marginal pricing. Nash bargaining theory is used to model a Pareto-efficient settlement point. The model predicts negotiation results under varied conditions and identifies circumstances in which the two parties might fail to reach an agreement. Both analysis and agent-based simulation are used to gain insight regarding how relative risk aversion and biased price estimates influence negotiated outcomes. These results should provide useful guidance to market participants in their bilateral contract negotiation processes

    Information Losses in Neural Classifiers from Sampling

    Get PDF
    This paper considers the subject of information losses arising from the finite datasets used in the training of neural classifiers. It proves a relationship between such losses as the product of the expected total variation of the estimated neural model with the information about the feature space contained in the hidden representation of that model. It then bounds this expected total variation as a function of the size of randomly sampled datasets in a fairly general setting, and without bringing in any additional dependence on model complexity. It ultimately obtains bounds on information losses that are less sensitive to input compression and in general much smaller than existing bounds. The paper then uses these bounds to explain some recent experimental findings of information compression in neural networks which cannot be explained by previous work. Finally, the paper shows that not only are these bounds much smaller than existing ones, but that they also correspond well with experiments.Comment: To be published in IEEE TNNL

    Solve Large-scale Unit Commitment Problems by Physics-informed Graph Learning

    Full text link
    Unit commitment (UC) problems are typically formulated as mixed-integer programs (MIP) and solved by the branch-and-bound (B&B) scheme. The recent advances in graph neural networks (GNN) enable it to enhance the B&B algorithm in modern MIP solvers by learning to dive and branch. Existing GNN models that tackle MIP problems are mostly constructed from mathematical formulation, which is computationally expensive when dealing with large-scale UC problems. In this paper, we propose a physics-informed hierarchical graph convolutional network (PI-GCN) for neural diving that leverages the underlying features of various components of power systems to find high-quality variable assignments. Furthermore, we adopt the MIP model-based graph convolutional network (MB-GCN) for neural branching to select the optimal variables for branching at each node of the B&B tree. Finally, we integrate neural diving and neural branching into a modern MIP solver to establish a novel neural MIP solver designed for large-scale UC problems. Numeral studies show that PI-GCN has better performance and scalability than the baseline MB-GCN on neural diving. Moreover, the neural MIP solver yields the lowest operational cost and outperforms a modern MIP solver for all testing days after combining it with our proposed neural diving model and the baseline neural branching model
    • …
    corecore