263 research outputs found

    Extracellular Vimentin Modulation of Human Dendritic Cell Activation

    Get PDF
    Vimentin is traditionally considered to be an intracellular protein with a primarily structural role. Evidence suggests that extracellular vimentin can be found in cancer, tissue injury, and autoimmunity. Extracellular vimentin has already been shown to alter innate immunity by increasing monocyte and macrophage ability to kill bacteria, but also decreasing neutrophil infiltration into inflamed tissue. How extracellular vimentin affects initiation of adaptive immunity has not been previously studied. To initiate adaptive immunity, antigen presenting cells prime naïve T cells. Since the most effective antigen-presenting cells are dendritic cells (DCs), the DCs are important in immune responses against cancer, self, and pathogens. In this dissertation, I used primary human cell culture to demonstrate the effects of extracellular vimentin on DCs and T cells. In activated DCs, extracellular vimentin decreases secretion of pro-inflammatory cytokines IL-6 and IL-12 and increases secretion of the anti-inflammatory cytokine IL-10. As a result, there is less Th1 activation, resulting in an anti-inflammatory effect. This data supports the hypothesis that vimentin is a modulator of DC induced activation, resulting in a mild anti-inflammatory effect. By inducing suppression of the adaptive immune response, vimentin could be involved in cancer or trauma-complications. I also had a clinically-focused side project focused on rheumatoid arthritis (RA), an autoimmune disease. The first line therapy for RA is methotrexate (MTX), but MTX is sometimes ineffective or has side effects. I attempted to correlate in vitro MTX induced changes with MTX efficacy and MTX side effects in a small group of RA patients. The in vitro assay focused on MTX induced decreases in IL-17, a cytokine from pro-inflammatoryTh17 cells thought to be involved in RA pathogenesis. I found that there is greater variation in the effect of MTX on in vitro IL-17 secretion in those with side effects vs those without. This suggests that patients that had an unusually large or small reduction in IL-17 levels in response to MTX in vitro ultimately had side effects to the drug

    Evaluation of Tissue-engineered Tendon Enthesis Polymer Constructs

    Get PDF
    Both scientists and clinicians have proposed tissue engineering as the future of medicine. The possibilities for tissue engineering, that is, fabrication of tissues and organs in the laboratory and their translation to patients, appear to be endless, and many believe that this new approach in medicine will result in abolishing many common ailments, injuries, and congenital defects. Injuries to a tendon enthesis, the normal tissue connection between tendon and bone, are of particular concern to clinicians because of their frequency and failure to repair as a result of surgery. While these injuries may not be life threatening, they can certainly limit mobility and reduce the quality of life in those affected individuals. Fabrication of a tendon enthesis by tissue engineering would offer an alternative to the routine of surgery now performed and present potential for treatment and healing of the tissue now unavailable. In the current prospective study, polymer scaffolds created using polycaprolactone (PCL), poly-L lactide (PLLA), or nano-polyglycolic acid (nPGA) were seeded with chondrocytes, tenocytes, and periosteum for the development of cartilage, tendon and bone, respectively, and then implanted into six athymic nude mice for a period of 10 weeks. One group of constructs (scaffolds and cells or tissue together) was tethered to the mice 2 in order to determine if mechanical forces improved or were required for tendon enthesis formation compared to a group of identical implanted constructs that were not tethered. Analysis by histology illustrated a noticeable increase in tissue formation around the area of anticipated enthesis in tethered constructs when compared to constructs that were not tethered. Based on these data, it is believed that mechanical tension (tethering) is required for the formation of a tendon enthesi

    A Chemical Epitope-Targeting Strategy for Protein Capture Agents: The Serine 474 Epitope of the Kinase Akt2

    Get PDF
    Target and click: Peptide ligands targeted to the C-terminal motif of the kinase Akt2 were obtained by combining phosphate recognition of a dinuclear zinc(II) complex with in situ click chemistry to target this epitope. The peptide ligands (shown as XXXXX) selectively bind the C-terminal polypeptide of Akt2, and are selective for Akt2 relative to the Akt1 and Akt3 isoforms. The ligands differentially modulate Akt2 activity

    American College of Clinical Pharmacy White Paper: Cultural Competency in Health Care and Its Implications for Pharmacy Part 3A: Emphasis on Pharmacy Education, Curriculums, and Future Directions

    Get PDF
    Culture influences patients\u27 beliefs and behaviors toward health and illness. As the U.S. population becomes more diverse, a critical need exists for pharmacy education to incorporate patient-centered culturally sensitive health care knowledge and skills into the curriculum. Nursing was the first profession to incorporate this type of learning and training into its curriculums, followed by medicine. Pharmacy has also made great progress to revise curriculums, but inconsistency exists in depth, breadth, and methods across pharmacy colleges. This article addresses important aspects of pharmacy education such as curriculum development, incorporation of educational innovations and techniques into the teaching of patient-centered culturally sensitive health care across the curriculum from didactic to experiential learning, assessment tools, and global education. A preliminary model curriculum with objectives and examples of teaching methods is proposed. Future directions in pharmacy education, teaching and learning scholarship, postgraduate education, licensure, and continuing education are also presented

    miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia

    Get PDF
    MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy

    3-Phosphoinositide–Dependent Kinase 1 Potentiates Upstream Lesions on the Phosphatidylinositol 3-Kinase Pathway in Breast Carcinoma

    Get PDF
    Lesions of ERBB2, PTEN, and PIK3CA activate the phosphati- dylinositol 3-kinase (PI3K) pathway during cancer development by increasing levels of phosphatidylinositol-3,4,5-triphosphate (PIP3). 3-Phosphoinositide-dependent kinase 1 (PDK1) is the first node of the PI3K signal output and is required for activation of AKT. PIP3 recruits PDK1 and AKT to the cell membrane through interactions with their pleckstrin homology domains, allowing PDK1 to activate AKT by phosphorylating it at residue threonine-308. We show that total PDK1 protein and mRNA were overexpressed in a majority of human breast cancers and that 21% of tumors had five or more copies of the gene encoding PDK1, PDPK1. We found that increased PDPK1 copy number was associated with upstream pathway lesions (ERBB2 amplification, PTEN loss, or PIK3CA mutation), as well as patient survival. Examination of an independent set of breast cancers and tumor cell lines derived from multiple forms of human cancers also found increased PDK1 protein levels associated with such upstream pathway lesions. In human mammary cells, PDK1 enhanced the ability of upstream lesions to signal to AKT, stimulate cell growth and migration, and rendered cells more resistant to PDK1 and PI3K inhibition. After orthotopic transplantation, PDK1 overexpression was not oncogenic but dramatically enhanced the ability of ERBB2 to form tumors. Our studies argue that PDK1 overexpression and increased PDPK1 copy number are common occurrences in cancer that potentiate the oncogenic effect of upstream lesions on the PI3K pathway. Therefore, we conclude that alteration of PDK1 is a critical component of oncogenic PI3K signaling in breast cancer

    Polyunsaturated fatty acid interactions and breast cancer incidence: a population-based case-control study on Long Island, New York

    Get PDF
    Experimental studies demonstrate that ω-3 polyunsaturated fatty acids (PUFAs) inhibit inflammatory eicosanoids generated by ω-6 PUFAs. Epidemiologic studies on dietary ω-3 PUFA intake show consistent inverse associations with breast cancer incidence among Asian populations, where ω-3, relative to ω-6, intake is high. In contrast, associations are inconsistent among Western populations, where intake of ω-3, relative to ω-6, intake is low. We hypothesized that examining interactions between ω-3 and ω-6 would help elucidate the PUFA-breast cancer association in the U.S

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
    • …
    corecore