11 research outputs found

    Persistent organic pollutants (POPs) in oriental magpie-robins from e-waste, urban, and rural sites: Site-specific biomagnification of POPs

    No full text
    Plenty of banned and emerging persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), and decabromodiphenyl ethane (DBDPE), were measured in oriental magpie-robins from an e-waste recycling site, an urban site (Guangzhou City), and a rural site in South China. Median concentrations of DDTs, PCBs, PBDEs, DP, and DBDPE ranged from 1,000-1,313, 800-59,368, 244-5,740, 24.1-127, and 14.7-36.0 ng/g lipid weight, respectively. Birds from the e-waste site had significantly higher concentrations of PCBs and PBDEs than those from urban and rural sites (p < 0.05), implying contamination of PCBs and PBDEs brought by e-waste recycling activities. DDTs were the predominant POPs in birds from urban and rural sites. The values of delta N-15 were significantly and positively correlated with concentrations of p,p'-DDE and low-halogenated chemicals in samples from the e-waste site (p < 0.05), indicating the trophic magnification of these chemicals in birds. However, concentrations of most POPs were not significantly correlated with the delta N-15 values in birds from urban and rural sites. PCBs and PBDEs in birds from urban and rural sites were not likely from local sources, and the biomagnification of POPs in different sites needed to be further investigated with caution

    Selection of passerine birds as bio-sentinel of persistent organic pollutants in terrestrial environment

    No full text
    A broad suite of persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dichlorodiphenyltrichloroethane (DDT) and its metabolites, were analyzed in pectoral muscle of eight terrestrial passerine bird species from an extensive e-waste recycling site in South China. Concentrations of PCBs, PBDEs, and DDTs in bird samples ranged from 1260-279,000, 121-14,200, and 31-7910 ng/g lipid weight, respectively. Insectivorous birds had significantly higher levels of PCBs, PBDEs, and DDTs than those in granivorous birds. Concentrations of POPs in resident insectivorous birds were significantly greater than those in migrant insectivorous birds. PCBs were the predominant pollutants in all bird species from the e-waste site, followed by PBDEs and DDTs, indicating that PCBs were mainly derived from e-wastes. The granivorous birds had higher proportions of hepta-CBs in total PCBs and higher proportions of octa-to deca-BDEs in total PBDEs compared with the insectivorous birds. The various dietary sources, migration behavior, and possible biotransformation were suspected as reasons of the distinct profiles of POPs in different bird species. The delta N-15 values were significantly and positively correlated with concentrations of POPs in resident insectivorous birds, but not in other passerine bird species, suggesting the influence of trophic levels on bioaccumulation of POPs in resident insectivorous birds. The resident insectivorous birds seem to be promising bio-sentinel of POPs in terrestrial environment around the e-waste sites. (C) 2018 Elsevier B.V. All rights reserved
    corecore