117,242 research outputs found

    Quantitative KK-theory for SQpSQ_p-algebras

    Get PDF
    Quantitative (or controlled) KK-theory for CC^*-algebras was introduced by Guoliang Yu in his work on the Novikov conjecture for groups with finite asymptotic dimension, and was later expanded into a general theory, with further applications, by Yu together with Hervé Oyono-Oyono. Motivated by investigations of the LpL_p Baum-Connes conjecture, we will describe an analogous framework of quantitative KK-theory that applies to algebras of bounded linear operators on subquotients of LpL_p spaces

    On Rearrangement of Items Stored in Stacks

    Full text link
    There are n2n \ge 2 stacks, each filled with dd items, and one empty stack. Every stack has capacity d>0d > 0. A robot arm, in one stack operation (step), may pop one item from the top of a non-empty stack and subsequently push it onto a stack not at capacity. In a {\em labeled} problem, all ndnd items are distinguishable and are initially randomly scattered in the nn stacks. The items must be rearranged using pop-and-pushs so that in the end, the kthk^{\rm th} stack holds items (k1)d+1,,kd(k-1)d +1, \ldots, kd, in that order, from the top to the bottom for all 1kn1 \le k \le n. In an {\em unlabeled} problem, the ndnd items are of nn types of dd each. The goal is to rearrange items so that items of type kk are located in the kthk^{\rm th} stack for all 1kn1 \le k \le n. In carrying out the rearrangement, a natural question is to find the least number of required pop-and-pushes. Our main contributions are: (1) an algorithm for restoring the order of n2n^2 items stored in an n×nn \times n table using only 2n2n column and row permutations, and its generalization, and (2) an algorithm with a guaranteed upper bound of O(nd)O(nd) steps for solving both versions of the stack rearrangement problem when dcnd \le \lceil cn \rceil for arbitrary fixed positive number cc. In terms of the required number of steps, the labeled and unlabeled version have lower bounds Ω(nd+ndlogdlogn)\Omega(nd + nd{\frac{\log d}{\log n}}) and Ω(nd)\Omega(nd), respectively

    Baryon-meson interactions in chiral quark model

    Full text link
    Using the resonating group method (RGM), we dynamically study the baryon-meson interactions in chiral quark model. Some interesting results are obtained: (1) The Sigma K state has an attractive interaction, which consequently results in a Sigma K quasibound state. When the channel coupling of Sigma K and Lambda K is considered, a sharp resonance appears between the thresholds of these two channels. (2) The interaction of Delta K state with isospin I=1 is attractive, which can make for a Delta K quasibound state. (3) When the coupling to the Lambda K* channel is considered, the N phi is found to be a quasibound state in the extended chiral SU(3) quark model with several MeV binding energy. (4) The calculated S-, P-, D-, and F-wave KN phase shifts achieve a considerable improvement in not only the signs but also the magnitudes in comparison with other's previous quark model study.Comment: 5 pages, 2 figures. Talk given at 3rd Asia Pacific Conference on Few-Body Problems in Physics (APFB05), Korat, Nakhon Ratchasima, Thailand, 26-30 Jul 200
    corecore