344 research outputs found

    Influence of Laserâ Microtextured Surface Collar on Marginal Bone Loss and Periâ Implant Soft Tissue Response: A Systematic Review and Metaâ Analysis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142176/1/jper0651-sup-0003.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142176/2/jper0651.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142176/3/jper0651-sup-0004.pd

    Efficient Feeder-Free Episomal Reprogramming with Small Molecules

    Get PDF
    Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free), and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs. However, each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery, but the process was inefficient and required feeder cells. Here, we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover, we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts, adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs

    Nematic topological superconducting phase in Nb-doped Bi2Se3

    Get PDF
    A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in which a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3

    Accuracy of flapless immediate implant placement in anterior maxilla using computerâ assisted versus freehand surgery: A cadaver study

    Full text link
    ObjectiveTo compare the accuracy of computerâ guided surgery and freehand surgery on flapless immediate implant placement (IIP) in the anterior maxilla.Material and MethodsIn this splitâ mouth design, 24 maxillary incisors in eight human cadaver heads were randomly divided into two groups: computerâ guided surgery (n = 12) and freehand surgery (n = 12). Preoperatively, coneâ beam computed tomography (CBCT) scans were acquired, and all implants were planned with a software (Blue Sky Plan3). Then, two types of surgeries were performed. To assess any differences in position, the postoperative CBCT was subsequently matched with the preoperative planning. For all the implants, the angular, global, depth, buccoâ lingual, and mesioâ distal deviations between the virtual and actual implant positions were measured.ResultsA significant lower mean angular deviation (3.11 ± 1.55°, range: 0.66â 4.95, p = 0.002) and the global deviation at both coronal (0.85 ± 0.38 mm, range: 0.42â 1.51, p = 0.004) and apical levels (0.93 ± 0.34 mm, range: 0.64â 1.72, p < 0.001) were observed in the guided group when compared to the freehand group (6.78 ± 3.31°, range: 3.08â 14.98; 1.43 ± 0.49 mm, range: 0.65â 2.31, and 2.2 ± 0.79 mm, range: 1.01â 4.02). However, the accuracy of these two approaches was similar for the depth (p = 0.366). In the buccal direction, the mean deviations of both groups showed a general tendency of implants to be positioned facially, occurring more in implants of the freehand group.ConclusionIn flapless IIP, computerâ guided surgery showed superior accuracy than freehand surgery in transferring the implant position from the planning. However, even with the help of a guide, the final fixture position tends to shift toward a facial direction.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146997/1/clr13382_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146997/2/clr13382.pd

    Registering Maxillomandibular Relation to Create a Virtual Patient Integrated with a Virtual Articulator for Complex Implant Rehabilitation: A Clinical Report

    Full text link
    The virtual patient, a unique computer simulation of the patient’s face, teeth, oral mucosa, and bone, provides an extraordinary mechanism for digital dental implant surgery planning and prosthetic design. However, the seamless registration of digital scans with functional information in the context of a virtual articulator remains a challenge. This report describes the treatment of a 47- year- old male with full- mouth guided immediate implant placement and immediate loading of CAD/CAM interim prostheses. Utilizing a novel digital workflow, a multifactorial registration of the vertical dimension of occlusion, centric occlusion, and facebow record were completed digitally and paired within a digital articulator. Utilizing this innovative approach, a complex treatment plan and procedure was executed smoothly with a successful prosthetic outcome demonstrating good fit, occlusion, esthetics, and patient reported satisfaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156492/2/jopr13204.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156492/1/jopr13204_am.pd

    Organic coating on sulfate and soot particles during late Summer in the Svalbard Archipelago

    Get PDF
    14 pages, 8 figures, 1 table, supplement https://doi.org/10.5194/acp-19-10433-2019Interaction of anthropogenic particles with radiation and clouds plays an important role in Arctic climate change. The mixing state of aerosols is a key parameter to influence aerosol radiation and aerosol–cloud interactions. However, little is known of this parameter in the Arctic, preventing an accurate representation of this information in global models. Here we used transmission electron microscopy with energy-dispersive X-ray spectrometry, scanning electron microscopy, nanoscale secondary ion mass spectrometry, and atomic forces microscopy to determine the size and mixing state of individual sulfate and carbonaceous particles at 100 nm to 2 µm collected in the Svalbard Archipelago in summer. We found that 74 % by number of non-sea-salt sulfate particles were coated with organic matter (OM); 20 % of sulfate particles also had soot inclusions which only appeared in the OM coating. The OM coating is estimated to contribute 63 % of the particle volume on average. To understand how OM coating influences optical properties of sulfate particles, a Mie core–shell model was applied to calculate optical properties of individual sulfate particles. Our result shows that the absorption cross section of individual OM-coated particles significantly increased when assuming the OM coating as light-absorbing brown carbon. Microscopic observations here suggest that OM modulates the mixing structure of fine Arctic sulfate particles, which may determine their hygroscopicity and optical propertiesThis work was funded by the National Natural Science Foundation of China (41622504, 41575116, 31700475) and the Hundred Talents Program in Zhejiang University. Zongbo Shi acknowledges funding from NERC (NE/S00579X/1)Peer Reviewe

    Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis

    Get PDF
    Bax and Bak play a redundant but essential role in apoptosis initiated by the mitochondrial release of apoptogenic factors. In addition to their presence at the mitochondrial outer membrane, Bax and Bak can also localize to the ER. Agents that initiate ER stress responses can induce conformational changes and oligomerization of Bax on the ER as well as on mitochondria. In wild-type cells, this is associated with caspase 12 cleavage that is abolished in bax−/−bak−/− cells. In bax−/−bak−/− cells, introduction of Bak mutants selectively targeted to either mitochondria or the ER can induce apoptosis. However, ER-targeted, but not mitochondria-targeted, Bak leads to progressive depletion of ER Ca2+ and induces caspase 12 cleavage. In contrast, mitochondria-targeted Bak leads to enhanced caspase 7 and PARP cleavage in comparison with the ER-targeted Bak. These findings demonstrate that in addition to their functions at mitochondria, Bax and Bak also localize to the ER and function to initiate a parallel pathway of caspase activation and apoptosis
    corecore