3,349 research outputs found
Model independent analysis of top quark forward-backward asymmetry at the Tevatron up to \mathcal{O}(\as^2/\Lambda^2)
We present the complete calculations of the forward-backward asymmetry
() and the total cross section of top quark pair production induced
by dimension-six four quark operators at the Tevatron up to
\mathcal{O}(\as^2/\Lambda^2). Our results show that next-to-leading order
(NLO) QCD corrections can change and the total cross section by
about 10%. Moreover, NLO QCD corrections reduce the dependence of
and total cross section on the renormalization and factorization scales
significantly. We also evaluate the total cross section and the charge
asymmetry () induced by these operators at the Large Hadron Collider
(LHC) up to \mathcal{O}(\as^2/\Lambda^2), for the parameter space allowed by
the Tevatron data. We find that the value of induced by these
operators is much larger than SM prediction, and LHC has potential to discover
these NP effects when the measurement precision increases.Comment: 25 pages, 10 figures; final version in PR
Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells.
IntroductionAlthough breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors.MethodsParaffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation.ResultsImmunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH+/GD2+ cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH+ or ALDH+/GD2+ cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes.ConclusionsOur findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH+ and ALDH+/GD2+ subpopulations
Concurrent Papillary Thyroid Cancer with Pituitary ACTH-secreting Tumor
Concomitant thyroid cancer with pituitary tumor is uncommon. This study reports a case of advanced papillary thyroid carcinoma with pituitary adrenocorticotropic hormone (ACTH)-secreting tumor. A 58-year-old male patient had thyroid cancer in 1991 and presented with headache caused by pituitary tumor with apoplexy in 1993. Due to hypopituitarism, the patient underwent radioactive iodide (131I) for detection and treatment of metastatic thyroid cancer after the use of recombinant human thyroid-stimulating hormone (rhTSH) in 2000. During follow-up for thyroid cancer 201thallium scan proved to be an effective tool for detecting metastatic thyroid cancer in the patient without pituitary TSH reserve. Pituitary ACTH-secreting tumor was confirmed in 2001 based on the high serum ACTH level and positive immunohistochemical stain for ACTH. The patient had no Cushingoid features. Moreover, serum ACTH levels were 337 and 232 pg/mL with normal serum cortisol and urine-free cortisol. Although the patient underwent three operations and a total of 370 mCi 131I therapy for recurrent thyroid cancer, the cancer continued to progress. Finally, the patient died of pneumonia with septic shock 12 years after the diagnosis of thyroid cancer. [J Formos Med Assoc 2007;106(4):330-335
Effects of Electroacupuncture on Benign Prostate Hyperplasia Patients with Lower Urinary Tract Symptoms: A Single-Blinded, Randomized Controlled Trial
We tested the effect of electroacupuncture (EA) on lower urinary tract symptoms (LUTS) in benign prostatic hyperplasia (BPH) patients. A total of 42 BPH patients with LUTS were randomly assigned to either the EA group (EG), received 2 Hz EA for 20 min twice/week for a total of twelve treatments, or a sham EA group (CG), received sham EA. The increase of voiding volume, average flow rate, and maximal flow rate in the EG were 32.2 ± 104.4 mL, 1.2 ± 1.6 mL/sec, and 2.3 ± 3.7 mL/sec, respectively, from baseline value (before EA) using the measurement of an uroflowmetry. These increases were greater than −37.9 ± 120.4, −0.22 ± 2.7, and −0.3 ± 4.3, respectively, in the CG (P = .038, .026, and .030, resp.). The changes of prostate special antigen and international prostatic symptom score were not significantly different between two groups (P = .573, .175, resp.), suggesting the clinical improvement of 2 Hz EA was quite limited to the LUTS of patients with BPH
The Effect of Refrigeration Lubricant Properties on Nucleate Pool Boiling Heat Transfer Performance
Refrigeration lubricant plays a key role in lubricating and sealing during vapor compression processes. However, it may migrate to the evaporator to influence the heat transfer characteristics, either enhancement or degradation. The aim of this study is to fundamentally understand the effect of lubricant properties and bubble parameters on heat transfer performance. To clarify parameters affecting the heat transfer coefficient, several experiments were conducted on a horizontal flat surface, and pool-boiling phenomenon was recording by high-speed camera. Comparisons of heat transfer measurements for different refrigerant/lubricant mixtures were made, including two different refrigerants (R-134a & R-1234ze) and eight POE lubricants with different miscibility, ISO68 to ISO170 viscosity range. This study shows that improvements over pure refrigerant heat transfer can be obtained for refrigerant /lubricant mixtures with small lubricant mass fraction, high lubricant viscosity, and a low critical solution temperature (CST). The presence of lubricant will decrease the departure bubble diameter and may deteriorate heat transfer performance when the lubricant mass fraction is higher than 3%. A mechanistic explanation was provided for the observed refrigerant/lubricant boiling phenomenon, and we were successfully in creating a new model to quantify the effect of lubricant properties on the heat transfer performance. This model was developed based on cavity boiling theory, interfacial energy calculation between metal-liquid surface, and liquid-bubble interface. According to the model, the presence of lubricant layer on metal surface and surrounding the bubble will significantly alter waiting time of boiling, bubble departure time, activity site density of boiling incipience and superheat on heating surface
On the Effect of Lubricant on Pool Boiling Heat Transfer Performance
   For typical vapor compression processes, lubricant oil is very essential for lubricating and sealing the sliding parts and the lubricant also takes part in cushioning cylinder valves. However lubricants may migrate to the evaporator to alter the heat transfer characteristics. This is can be made clear from the viscosity and surface tension of lubricant since the viscosity of lubricant oil is about two to three orders higher than that of refrigerant whereas the corresponding surface tension of lubricant is approximately one order higher. Typically, the presence of lubricant may deteriorate heat transfer performance, yet this phenomenon becomes more severe when the lubricant mass fraction is higher. However, some previous literatures had clearly showed that the presence of lubricant oil may favor the heat transfer performance at a low lubricant fraction and the heat transfer performance may peak at a specific oil concentration. In this study, the authors aim at clarifying this phenomenon subject to pool boiling condition. Various parameters affecting the heat transfer coefficient, such as viscosity, surface tension, critical solution temperature and other thermodynamic and transport properties will be examined.    During pool boiling process, the lubricant accumulates on the surface since the refrigerant is preferential to evaporate. Hence, excess lubricant enrichment on the surface results in a thin lubricant excess layer and a thermal boundary layer, which influence the heat transfer performance, either enhancement or degradation. The excess layer may bring about a liquid-solid surface energy reduction which increases site density and reduces the bubble departure diameter, causing enhancement and degradation in heat transfer performance, respectively. However, the effect of the bubble departure diameter normally surpasses the influence of site density. This may be the crucial reason that gives rise to an occurrence of the plateau of heat transfer coefficient and followed by an apparent decline of heat transfer coefficient with a further increase of lubricant concentration.    Moreover, with the preferential evaporation of the refrigerant, a surface tension gradient is formed, which induces the Marangoni effect through which refrigerant/lubricant mixtures is supplied toward the contact line. From the phase equilibrium diagram, the maximum of the Marangoni number may occur at the low lubricant concentration with a maximum temperature difference. Hence, the presence of Marangoni effect may also be the favor the heat transfer accordingly. Also, a small fraction of lubricant will increase a larger viscosity that provide a thicker thermal boundary layer which may activate more site density, and enhances the heat transfer performance. Furthermore, miscibility may also play a crucial factor that affects the pool boiling heat transfer performance. The fluid with a smaller difference between the bulk fluid temperature and critical solution temperature may yield a better heat transfer performance by drawing superheated liquid onto the bubble sides.
Analysis of the High Conversion Efficiencies β
Both β-FeSi2 and BaSi2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi2/p-Si and n-Si/i-BaSi2/p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi2/p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi2/p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%). These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work
Phenomenon observation of selective withdrawal of bottom density currents through a line sink
Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA, September 2006. http://hdl.handle.net/1860/732A rectangular flume of dimension 180cm long × 40cm high × 5cm wide was used to observe the
flow condition of density current withdrew by a line sink. Saline water is used as dense fluid to form
a bottom density current. Red color is applied for dyeing dense fluid for observing the interface
which is between lower-layer flow and upper-layer flow of the two-layer flow system. The vertical
concentration profile of density current, the entry angle which between the interface and the
centerline of the slot, and the outflow concentration are measured after the equilibrium state is
reached. The thicknesses of lower-layer flow with high concentration and entry angles were studied,
which had been discussed via theoretical reasoning but not experimental data in selective
withdrawal. The former has an asymptotic value as concentration over a critical value in each
inflow discharge. The latter are close to theoretical values calculated by the equation of Forbes and
Hocking (1998) especially when the entry angle is small
Recommended from our members
Sialylation of vasorin by ST3Gal1 facilitates TGF-β1-mediated tumor angiogenesis and progression.
ST3Gal1 is a key sialyltransferase which adds α2,3-linked sialic acid to substrates and generates core 1 O-glycan structure. Upregulation of ST3Gal1 has been associated with worse prognosis of breast cancer patients. However, the protein substrates of ST3Gal1 implicated in tumor progression remain elusive. In our study, we demonstrated that ST3GAL1-silencing significantly reduced tumor growth along with a notable decrease in vascularity of MCF7 xenograft tumors. We identified vasorin (VASN) which was shown to bind TGF-β1, as a potential candidate that links ST3Gal1 to angiogenesis. LC-MS/MS analysis of VASN secreted from MCF7, revealed that more than 80% of its O-glycans are sialyl-3T and disialyl-T. ST3GAL1-silencing or desialylation of VASN by neuraminidase enhanced its binding to TGF-β1 by 2- to 3-fold and thereby dampening TGF-β1 signaling and angiogenesis, as indicated by impaired tube formation of HUVECs, suppressed angiogenesis gene expression and reduced activation of Smad2 and Smad3 in HUVEC cells. Examination of 114 fresh primary breast cancer and their adjacent normal tissues showed that the expression levels of ST3Gal1 and TGFB1 were high in tumor part and the expression of two genes was positively correlated. Kaplan Meier survival analysis showed a significantly shorter relapse-free survival for those with lower expression VASN, notably, the combination of low VASN with high ST3GAL1 yielded even higher risk of recurrence (p = 0.025, HR = 2.967, 95% CI = 1.14-7.67). Since TGF-β1 is known to transcriptionally activate ST3Gal1, our findings illustrated a feedback regulatory loop in which TGF-β1 upregulates ST3Gal1 to circumvent the negative impact of VASN
Immunotherapy: rAAV2 expressing interleukin-15 inhibits HeLa cell tumor growth in mice
Human interleukin-15 (hIL15) has anti-tumor activities, but it is not convenient for tumor treatment because of its short half-life. A gene therapy for mouse lung cancer using an adenovirus vector expressing IL15 has been reported. However, adenovirus vector-mediated gene therapy can provoke cellular toxicity and inflammatory reactions. The recombinant adenovirus-associated vector 2 (rAAV2) is safer due to minimal cellular toxicity and immune response. In order to demonstrate that gene therapy can be used safely and successfully for human cancer treatment, the rAAV2 expressing hIL15 gene (rAAV2-hIL15) is applied for human cervical cancer, HeLa cell, in this study. This study successfully demonstrates that rAAV2-hIL15 can express IL15 with bioactivities in vitro and in vivo. In conclusion, our studies show that human cervical cancers are inhibited on animal model with rAAV2-hIL15 treatment and provide a safer and important reference for human cancer gene therapy
- …