1,992 research outputs found

    Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    Get PDF
    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm

    Exemplar-based Linear Discriminant Analysis for Robust Object Tracking

    Full text link
    Tracking-by-detection has become an attractive tracking technique, which treats tracking as a category detection problem. However, the task in tracking is to search for a specific object, rather than an object category as in detection. In this paper, we propose a novel tracking framework based on exemplar detector rather than category detector. The proposed tracker is an ensemble of exemplar-based linear discriminant analysis (ELDA) detectors. Each detector is quite specific and discriminative, because it is trained by a single object instance and massive negatives. To improve its adaptivity, we update both object and background models. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our tracking algorithm.Comment: ICIP201

    Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    Get PDF
    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm

    Dichlorido{[2-(diphenyl­phosphino)phenyl­imino­meth­yl]ferrocene-κ2 N,P}platinum(II) dichloro­methane hemisolvate

    Get PDF
    In the title compound, [FePt(C5H5)(C24H19NP)Cl2]·0.5CH2Cl2, the PtII atom adopts a distorted square-planar geometry defined by one P atom and one N atom from the bidentate [2-(diphenyl­phosphino)phenyl­imino­meth­yl]ferro­cene ligand and two Cl atoms. Two disordered dichloro­methane solvent mol­ecules are each 0.25-occupied on a twofold rotation axis

    Zero-Assignment Constraint for Graph Matching with Outliers

    Full text link
    Graph matching (GM), as a longstanding problem in computer vision and pattern recognition, still suffers from numerous cluttered outliers in practical applications. To address this issue, we present the zero-assignment constraint (ZAC) for approaching the graph matching problem in the presence of outliers. The underlying idea is to suppress the matchings of outliers by assigning zero-valued vectors to the potential outliers in the obtained optimal correspondence matrix. We provide elaborate theoretical analysis to the problem, i.e., GM with ZAC, and figure out that the GM problem with and without outliers are intrinsically different, which enables us to put forward a sufficient condition to construct valid and reasonable objective function. Consequently, we design an efficient outlier-robust algorithm to significantly reduce the incorrect or redundant matchings caused by numerous outliers. Extensive experiments demonstrate that our method can achieve the state-of-the-art performance in terms of accuracy and efficiency, especially in the presence of numerous outliers
    corecore