25 research outputs found

    EFFECTS OF ENZYME PRETREATMENT ON THE BEATABILITY OF FAST-GROWING POPLAR APMP PULP

    Get PDF
    Effects of enzyme pretreatment on the properties of fast-growing poplar APMP pulp were evaluated. Compared with the unpretreated pulp, the beatabilities of the pulp that had been pretreated by enzymes were improved significantly, such as a decrease of Canadian Standard Freeness (CSF) in the range of 25 mL to 55 mL, a decrease of PFI mill revolutions from 1000r to 5500r, and a decrease of beating energy consumption from 12.5% to 22.0%. The values of brightness, breaking length, tearing index, bursting index, and folding number of the pulp pretreated by cellulase were improved by 1.2%ISO, 23.7%, 14.8%, 14.6%, and 50% respectively, while that of the pulp pretreated by xylanase were respectively improved by 2.1%ISO, 16.8%, 8.8%, 8.9%, and 25%. The optimal enzyme dosages were 25 IU•g-1 and 25IU•g-1 for cellulase and xylanase, respectively. Fibre quality analysis results showed that the fibre length of pretreated pulp increased partly, fibre width and fines content decreased, fibres torsion increased, and fibre bonding got stronger. X-ray diffractometer analysis indicated that the degree of crystallinity of fibres increased after the enzyme pretreatment

    Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A and Promotes Breast Cancer Stem-Like Cells

    Get PDF
    Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stress–induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase A–dependent (LDHA-dependent) metabolic rewiring. Chronic stress–induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stress–induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological factors in promoting stem-like properties in breast cancer cells. Thus, the LDHA-lowering agent vitamin C can be a potential approach for combating stress-associated breast cancer

    The mechanisms of Yu Ping Feng San in tracking the cisplatin-resistance by regulating ATP-binding cassette transporter and glutathione S-transferase in lung cancer cells

    Get PDF
    Cisplatin is one of the first line anti-cancer drugs prescribed for treatment of solid tumors; however, the chemotherapeutic drug resistance is still a major obstacle of cisplatin in treating cancers. Yu Ping Feng San (YPFS), a well-known ancient Chinese herbal combination formula consisting of Astragali Radix, Atractylodis Macrocephalae Rhizoma and Saposhnikoviae Radix, is prescribed as a herbal decoction to treat immune disorders in clinic. To understand the fast-onset action of YPFS as an anti-cancer drug to fight against the drug resistance of cisplatin, we provided detailed analyses of intracellular cisplatin accumulation, cell viability, and expressions and activities of ATP-binding cassette transporters and glutathione S-transferases (GSTs) in YPFS-treated lung cancer cell lines. In cultured A549 or its cisplatin-resistance A549/DDP cells, application of YPFS increased accumulation of intracellular cisplatin, resulting in lower cell viability. In parallel, the activities and expressions of ATP-binding cassette transporters and GSTs were down-regulated in the presence of YPFS. The expression of p65 subunit of NF-ÎşB complex was reduced by treating the cultures with YPFS, leading to a high ratio of Bax/Bcl-2, i.e. increasing the rate of cell death. Prim-O-glucosylcimifugin, one of the abundant ingredients in YPFS, modulated the activity of GSTs, and then elevated cisplatin accumulation, resulting in increased cell apoptosis. The present result supports the notion of YPFS in reversing drug resistance of cisplatin in lung cancer cells by elevating of intracellular cisplatin, and the underlying mechanism may be down regulating the activities and expressions of ATP-binding cassette transporters and GSTs

    Mechanisms of the Traditional Chinese Herb

    No full text
    Atractylodes lancea (Thunb.) DC. (AL) has been proven to be effective in the treatment of coronavirus disease 2019 (COVID-19). In this study, TCMSP, TCMID, OMIM, GeneCards, PharmMapper and SwissTargetPrediction were used to collect potential targets for AL against COVID-19. The online STRING analysis platform and Cytoscape were used for generating a (protein-protein interaction) PPI network. The Cytoscape and Autodock software were used for determining hub genes and key compounds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via DAVID database. A total of 84 common targets were obtained. The antiviral pathways were main pathways in traetment. 10 hub genes and key compounds were screened by CytoHubba. We found that AL2, AL6 and AL38 had lower binding energy with key proteins. Our study demonstrated that AL might be used to treat COVID-19 by improving the "cytokine storm", regulating some antiviral pathways, and inhibiting the key protein through which the SARS-CoV-2 invades the host cell. These findings give a pharmacological basis and support for treating COVID-19 with AL

    Heat Transfer and Hydrodynamics in Stirred Tanks with Liquid-Solid Flow Studied by CFD–DEM Method

    No full text
    The heat transfer and hydrodynamics of particle flows in stirred tanks are investigated numerically in this paper by using a coupled CFD–DEM method combined with a standard k-e turbulence model. Particle–fluid and particle–particle interactions, and heat transfer processes are considered in this model. The numerical method is validated by comparing the calculated results of our model to experimental results of the thermal convection of gas-particle flows in a fluidized bed published in the literature. This coupling model of computational fluid dynamics and discrete element (CFD–DEM) method, which could calculate the particle behaviors and individual particle temperature clearly, has been applied for the first time to the study of liquid-solid flows in stirred tanks with convective heat transfers. This paper reports the effect of particles on the temperature field in stirred tanks. The effects on the multiphase flow convective heat transfer of stirred tanks without and with baffles as well as various heights from the bottom are investigated. Temperature range of the multiphase flow is from 340 K to 350 K. The height of the blade is varied from about one-sixth to one-third of the overall height of the stirred tank. The numerical results show that decreasing the blade height and equipping baffles could enhance the heat transfer of the stirred tank. The calculated temperature field that takes into account the effects of particles are more instructive for the actual processes involving solid phases. This paper provides an effective method and is helpful for readers who have interests in the multiphase flows involving heat transfers in complex systems

    Dual regulation of Akt and glutathione caused by isoalantolactone effectively triggers human ovarian cancer cell apoptosis

    No full text
    Ovarian cancer is one of leading causes of cancer death in gynecological tumor. Isoalantolactone (IL), present in several medicinal plants, exhibits various biological activities, and its mechanism underlying anti-ovarian cancer activity needs to be further investigated. Here, we find that IL inhibits the proliferation of SKOV-3 and OVCAR-3 cells by causing G2/M phase arrest and inducing apoptosis. Moreover, IL decreases intracellular glutathione (GSH) level, and induces reactive oxygen species (ROS) generation in SKOV-3 cells. Furthermore, IL induces inactivation of Akt which is required for the cytotoxicity of IL. In addition, overexpression of Akt attenuates the IL-induced growth inhibition and ROS generation. GSH supplementation moderately increases the expression of phospho-Akt. Further investigation reveals that pretreatment with L-buthionine-sulfoximine (a GSH biosynthesis inhibitor) restores the Akt-mediated attenuation of growth inhibition induced by IL. Moreover, co-treatment with IL and wortmannin (an Akt pathway inhibitor) increases the growth inhibition attenuated by pretreatment with N-acetyl-L-cysteine (a precursor for GSH biosynthesis). These results indicate that inactivation of Akt and downregulation of GSH level induced by IL are related to each other. In conclusion, combined targeting Akt and GSH is an effective strategy for cancer therapy and IL can be a promising anticancer agent for further exploration

    Chemical Elucidation of Structurally Diverse Willow Lignins

    No full text
    A new fast-growing wood raw material, willow (Salix matsudana cv. Zhuliu), was subjected to pulping to identify the structure of its lignin. Thus, the black liquor lignin (AL) and enzymatic mild acidolysis lignin (EMAL) were prepared, and their molecular structure and molecular weight of the isolated lignin polymers were comprehensively investigated by Fourier transform infrared spectroscopy (FT-IR), two-dimensional nuclear magnetic resonance (2D-NMR HSQC), 13C nuclear magnetic resonance (13C-NMR), and gel permeation chromatography (GPC). The NMR results showed that syringyl (S) unit was the predominant structural monomeric unit in willow lignin, as opposed to guaiacyl (G) and p-hydroxyphenyl (H) units. The S/G ratio for the EMAL was found to be 2.02, whereas that for the AL was 0.94. The lignin in the black liquor (AL) fraction was modified during pulping, as shown by its reduced molecular weight. The two isolated lignin polymers, EMAL and AL showed low weight-average molecular weight: 4127 g/mol and 3522.5 g/mol, and in addition they exhibited low polydispersity index (Mw/Mn < 2.0)

    High-Strength Regenerated Cellulose Fiber Reinforced with Cellulose Nanofibril and Nanosilica

    No full text
    In this study, a novel type of high-strength regenerated cellulose composite fiber reinforced with cellulose nanofibrils (CNFs) and nanosilica (nano-SiO2) was prepared. Adding 1% CNF and 1% nano-SiO2 to pulp/AMIMCl improved the tensile strength of the composite cellulose by 47.46%. The surface of the regenerated fiber exhibited a scaly structure with pores, which could be reduced by adding CNF and nano-SiO2, resulting in the enhancement of physical strength of regenerated fibers. The cellulose/AMIMCl mixture with or without the addition of nanomaterials performed as shear thinning fluids, also known as “pseudoplastic” fluids. Increasing the temperature lowered the viscosity. The yield stress and viscosity sequences were as follows: RCF-CNF2 &gt; RCF-CNF2-SiO22 &gt; RCF-SiO22 &gt; RCF &gt; RCF-CNF1-SiO21. Under the same oscillation frequency, G’ and G” decreased with the increase of temperature, which indicated a reduction in viscoelasticity. A preferred cellulose/AMIMCl mixture was obtained with the addition of 1% CNF and 1% nano-SiO2, by which the viscosity and shear stress of the adhesive were significantly reduced at 80 °C

    Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid

    No full text
    To improve the physical strength of regenerated cellulose fibers, cellulose dissolution was analyzed with a conductor-like screening model for real solvents in which 1-allyl-3-methylimidazolium chloride (AMIMCl) worked only as a hydrogen bond acceptor while dissolving the cellulose. This process could be promoted by the addition of urea, glycerol, and choline chloride. The dissolution and regeneration of cellulose was achieved through dry-jet and wet-spinning. The results demonstrated that the addition of hydrogen bond donors and acceptors either on their own or in combination can enhance the tensile strength, but their effects on the crystallinity of the regenerated fibers were quite limited. Compared with the regenerated fibers without any additives, the tensile strength was improved from 54.43 MPa to 139.62 MPa after introducing the choline chloride and glycerol, while related the crystallinity was only changed from 60.06% to 62.97%. By contrast, a more compact structure and fewer pores on the fiber surface were identified in samples with additives along with well-preserved cellulose frameworks. Besides, it should be noted that an optimization in the overall thermal stability was obtained in samples with additives. The significant effect of regenerated cellulose with the addition of glycerol was attributed to the reduction of cellulose damage by slowing down the dissolution and cross-linking in the cellulose viscose. The enhancement of the physical strength of regenerated cellulose fiber can be realized by the appropriate adjustment of the hydrogen bond distribution in the ionic liquid system with additives

    Aurora kinase A regulates cancer-associated RNA aberrant splicing in breast cancer

    No full text
    The contribution of oncogenes to tumor-associated RNA splicing and the relevant molecular mechanisms therein require further elaboration. Here, we show that oncogenic Aurora kinase A (AURKA) promotes breast cancer-related RNA aberrant splicing in a context-dependent manner. AURKA regulated pan-breast cancer-associated RNA splicing events including GOLGA4, RBM4 and UBQLN1. Aberrant splicing of GOLGA4 and RBM4 was closely related to breast cancer development. Mechanistically, AURKA interacted with the splicing factor YBX1 and promoted AURKA-YBX1 complex-mediated GOLGA4 exon inclusion. AURKA binding to the splicing factor hnRNPK promoted AURKA-hnRNPK complex-mediated RBM4 exon skipping. Analysis of clinical data identified an association between the AURKA-YBX1/hnRNPK complex and poor prognosis in breast cancer. Blocking AURKA nuclear translocation with small molecule drugs partially reversed the oncogenic splicing of RBM4 and GOLGA4 in breast cancer cells. In summary, oncogenic AURKA executes its function on modulating breast cancer-related RNA splicing, and nuclear AURKA is distinguished as a hopeful target in the case of treating breast cancer
    corecore