340 research outputs found

    The nonextensive parameter for the rotating astrophysical systems with power-law distributions

    Full text link
    We study the nonextensive parameter for the rotating astrophysical systems with power-law distributions, including both the rotating self-gravitating system and the rotating space plasma. We extend the equation of nonextensive parameter to complex system with arbitrary force field, and derive a general equation of the q-parameter, most generally including both the rotating self-gravitating systems and the rotating space plasmas. At the same time, we reproduce the kappa-distribution in space plasmas and obtain equations of the kappa-parameter. We show that the q-parameter is related not only to the temperature gradient, the gravitational force and the electromagnetic force, but also to the inertial centrifugal force and Coriolis force. Thus the rotation introduces significant effect on nonextensivity in the systems. Several examples are given to illustrate the nonextensive effect introduced by the rotation.Comment: 11 pages, 56 reference

    Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction

    Get PDF
    Some polyunsaturated fatty acids (PUFAs), if not all, have been shown to have tumoricidal action, but their exact mechanism(s) of action is not clear. In the present study, we observed that n-6 PUFA linoleic acid (LA) inhibited tumor cell growth at high concentrations (above 300 μM); while low concentrations (100-200 μM) promoted proliferation. Analysis of cell mitochondrial membrane potential, reactive oxygen species (ROS) formation, malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) activity suggested that anti-cancer action of LA is due to enhanced ROS generation and decreased cell anti-oxidant capacity that resulted in mitochondrial damage. Of the three cell lines tested, semi-differentiated colorectal cancer cells RKO were most sensitive to the cytotoxic action of LA, followed by undifferentiated colorectal cancer cell line (LOVO) while the normal human umbilical vein endothelial cells (HUVEC) were the most resistant (the degree of sensitivity to LA is as follows: RKO > LOVO > HUVEC). LA induced cell death was primed by mitochondrial apoptotic pathway. Pre-incubation of cancer cells with 100 μM LA for 24 hr enhanced sensitivity of differentiated and semi-differentiated cells to the subsequent exposure to LA. The relative resistance of LOVO cells to the cytotoxic action of LA is due to a reduction in the activation of caspase-3. Thus, LA induced cancer cell apoptosis by enhancing cellular oxidant status and inducing mitochondrial dysfunction

    Multiple bombesin-like peptides with opposite functions from skin of Odorrana grahami

    Get PDF
    AbstractBombesin-like peptides (BLPs) are a family of neuroendocrinic peptides that mediate a variety of biological activities. Three mature BLPs from the skin secretions of the frog Odorrana grahami were purified. Several bombesin-like peptide cDNA sequences encoding precursors of BLPs were identified from the skin cDNA library of O. grahami. This is the maximal diversity of BLPs ever found in animals. Five mature BLPs (B1–B5) based on the amino acid sequences derived from the cDNA cloning were synthesized. In the in vitro myotropic contraction experiment, all synthesized BLPs displayed a stimulating effect toward rat stomach strips, except B4 and B5 which showed the opposite effect, suggesting that certain BLPs may act as antagonists of bombesin receptors while most other BLPs act as agonists. This finding will facilitate the finding of novel bombesin receptors and novel ligands of bombesin receptors. The diversity of amphibian BLPs and their precursors were also analyzed and results suggest that amphibian BLPs and corresponding precursors of various sizes and processing patterns can be used as markers of taxonomic and molecular phylogenetics. The remarkable similarity of preproregions gives rise to very different BLPs and 3′-terminal regions in distantly related frog species, suggesting that the corresponding genes form a multigene family originating from a common ancestor. The diversification of BLP loci could thus be part of an evolutionary strategy developed by amphibian species as a result of shifts to novel ecological niches when environmental factors change rapidly

    Parametric knocking performance investigation of spark ignition natural gas engines and dual fuel engines

    Get PDF
    Both spark ignition (SI) natural gas engines and compression ignition (CI) dual fuel (DF) engines suffer from knocking when the unburnt mixture ignites spontaneously prior to the flame front arrival. In this study, a parametric investigation is performed on the knocking performance of these two engine types by using the GT-Power software. An SI natural gas engine and a DF engine are modelled by employing a two-zone zero-dimensional combustion model, which uses Wiebe function to determine the combustion rate and provides adequate prediction of the unburnt zone temperature, which is crucial for the knocking prediction. The developed models are validated against experimentally measured parameters and are subsequently used for performing parametric investigations. The derived results are analysed to quantify the effect of the compression ratio, air-fuel equivalence ratio and ignition timing on both engines as well as the effect of pilot fuel energy proportion on the DF engine. The results demonstrate that the compression ratio of the investigated SI and DF engines must be limited to 11 and 16.5, respectively, for avoiding knocking occurrence. The ignition timing for the SI and the DF engines must be controlled after −38 ◦CA and 3 ◦CA, respectively. A higher pilot fuel energy proportion between 5% and 15% results in increasing the knocking tendency and intensity for the DF Engine at high loads. This study results in better insights on the impacts of the investigated engine design and operating settings for natural gas (NG)-fuelled engines, thus it can provide useful support for obtaining the optimal settings targeting a desired combustion behaviour and engine performance while attenuating the knocking tendency

    Effect of Ketamine on LTP and NMDAR EPSC in Hippocampus of the Chronic Social Defeat Stress Mice Model of Depression

    Get PDF
    Depression is a common mental disorder that is associated with memory dysfunction. Ketamine has recently been demonstrated to be a rapid antidepressant. The mechanisms underlying how depression induces memory dysfunction and how ketamine relieves depressive symptoms remain poorly understood. This work compared three groups of male C57BL/6J mice: mice exposed to chronic social defeat stress (CSDS) to induce a depression-like phenotype, depression-like mice treated with ketamine, and control mice that were not exposed to CSDS or treated with ketamine. Spatial working memory and long term memory were assessed by spontaneous alternation Y-maze and fear conditioning tests, respectively. We used western blot to analyze the density of N-methyl-D-aspartate receptor (NMDAR) subunits in the hippocampus. We recorded long term potentiation (LTP) and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal slices. We observed that compared with control mice, depression-like mice had significant reductions in spatial working memory and contextual fear memory. The level of NR2B, LTP and NMDA receptor-mediated EPSCs of depression-like mice were decreased. Ketamine treatment attenuated the memory impairment, and increased the density of NR2B and the amplitude of LTP and NMDA receptor-mediated EPSCs in the hippocampus of depression-like mice. In conclusion, depression-like mice have deficits in working memory and contextual fear memory. The decrease of NR2B, LTP induction and NMDA receptor-mediated EPSCs in the hippocampus may be involved in this process. Ketamine can improve expression of NR2B, LTP induction and NMDA receptor-mediated EPSCs in the hippocampus of depression-like mice, which might be part of the reason why ketamine can alleviate the memory dysfunction induced by depression

    Combination of single-cell and bulk RNA seq reveals the immune infiltration landscape and targeted therapeutic drugs in spinal cord injury

    Get PDF
    BackgroundIn secondary spinal cord injury (SCI), the immune microenvironment of the injured spinal cord plays an important role in spinal regeneration. Among the immune microenvironment components, macrophages/microglia play a dual role of pro-inflammation and anti-inflammation in the subacute stage of SCI. Therefore, discovering the immune hub genes and targeted therapeutic drugs of macrophages/microglia after SCI has crucial implications in neuroregeneration. This study aimed to identify immune hub genes and targeted therapeutic drugs for the subacute phase of SCI.MethodsBulk RNA sequencing (bulk-RNA seq) datasets (GSE5296 and GSE47681) and single-cell RNA sequencing (scRNA-seq) dataset (GSE189070) were obtained from the Gene Expression Omnibus database. In the bulk RNA-seq, the R package ‘limma,’ ‘WGCNA,’ and ‘CIBERSORT’ were used to jointly screen key immune genes. Subsequently, the R package ‘Seurat’ and the R package ‘celldex’ were used to divide and annotate the cell clusters, respectively. After using the Autodock software to dock immune hub genes and drugs that may be combined, the effectiveness of the drug was verified using an in vivo experiment with the T9 SCI mouse model.ResultsIn the bulk-RNA seq, B2m, Itgb5, and Vav1 were identified as immune hub genes. Ten cell clusters were identified in scRNA-seq, and B2m and Itgb5 were mainly located in the microglia, while Vav1 was mainly located in macrophages. Molecular docking results showed that the proteins corresponding to these immune genes could accurately bind to decitabine. In decitabine-treated mice, the pro-inflammatory factor (TNF-α, IL-1β) levels were decreased while anti-inflammatory factor (IL-4, IL-10) levels were increased at 2 weeks post-SCI, and macrophages/microglia transformed from M1 to M2. At 6 weeks post-SCI, the neurological function score and electromyography of the decitabine treatment group were also improved.ConclusionIn the subacute phase of SCI, B2m, Itgb5, and Vav1 in macrophages/microglia may be key therapeutic targets to promote nerve regeneration. In addition, low-dose decitabine may promote spinal cord regeneration by regulating the polarization state of macrophages/microglia
    • …
    corecore