2,713 research outputs found

    Fraction-variant beam orientation optimization for non-coplanar IMRT

    Full text link
    Conventional beam orientation optimization (BOO) algorithms for IMRT assume that the same set of beam angles is used for all treatment fractions. In this paper we present a BOO formulation based on group sparsity that simultaneously optimizes non-coplanar beam angles for all fractions, yielding a fraction-variant (FV) treatment plan. Beam angles are selected by solving a multi-fraction FMO problem involving 500-700 candidate beams per fraction, with an additional group sparsity term that encourages most candidate beams to be inactive. The optimization problem is solved using the Fast Iterative Shrinkage-Thresholding Algorithm. Our FV BOO algorithm is used to create non-coplanar, five-fraction treatment plans for prostate and lung cases, as well as a non-coplanar 30-fraction plan for a head and neck case. A homogeneous PTV dose coverage is maintained in all fractions. The treatment plans are compared with fraction-invariant plans that use a fixed set of beam angles for all fractions. The FV plans reduced mean and max OAR dose on average by 3.3% and 3.7% of the prescription dose, respectively. Notably, mean OAR dose was reduced by 14.3% of prescription dose (rectum), 11.6% (penile bulb), 10.7% (seminal vesicle), 5.5% (right femur), 3.5% (bladder), 4.0% (normal left lung), 15.5% (cochleas), and 5.2% (chiasm). Max OAR dose was reduced by 14.9% of prescription dose (right femur), 8.2% (penile bulb), 12.7% (prox. bronchus), 4.1% (normal left lung), 15.2% (cochleas), 10.1% (orbits), 9.1% (chiasm), 8.7% (brainstem), and 7.1% (parotids). Meanwhile, PTV homogeneity defined as D95/D5 improved from .95 to .98 (prostate case) and from .94 to .97 (lung case), and remained constant for the head and neck case. Moreover, the FV plans are dosimetrically similar to conventional plans that use twice as many beams per fraction. Thus, FV BOO offers the potential to reduce delivery time for non-coplanar IMRT

    (4RS)-Methyl 4-cyano-4-cyclo­hexyl-4-phenyl­butano­ate

    Get PDF
    In the crystal structure of the title compound, C18H23NO2, there are only van der Waals inter­actions present. The cyclo­hexyl ring has a chair conformation. The longer axes of the displacement parameters of the non-H atoms forming the ethyl­methyl­carboxyl­ate skeleton are perpendicular to the plane through the non-H atoms of this skeleton

    Efficient Concentration Protocols for the Single-Photon Entanglement State with Polarization Feature

    Get PDF
    We propose two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled single-photon entanglement state, in which the photon qubit has the polarization feature. The first ECP is in linear optics, and the second ECP is in nonlinear optics. The two ECPs have some attractive advantages. First, they can preserve the polarization feature of the photon qubit, while all the other existing ECPs for single photon state cannot achieve this goal. Second, they only require one pair of less-entangled single-photon entanglement state and some auxiliary single photons. Third, they only require local operations. Especially, the second ECP can be used repeatedly, which can increase its success probability largely. Based on above properties, our two ECPs, especially the second one may be useful in current and future quantum communication

    Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disease associated with lipotoxicity, lipid peroxidation, oxidative stress and inflammation. Nuciferine, an active ingredient extracted from the natural lotus leaf, has been reported to be effective for the prevention and treatment of NAFLD. Per-Arnt-Sim kinase (PASK) is a nutrient responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration and gene expression. The aim of the present study was to investigate the protective effect of nuciferine against NAFLD and its inhibitory effect on PASK, exploring the possible underlying mechanism of nuciferine-mediated inhibition on NAFLD. Relevant biochemical parameters (lipid accumulation, extent of oxidative stress and release of inflammation cytokines) in oleic acid (OA)-induced HepG2 cells that mimicked steatosis in vitro were measured and compared with the control. It was found that nuciferine and silenced-PASK (siRNA PASK) both inhibited triglyceride (TG) accumulation and was effective in decreasing fatty acid (FFAs). The content of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) were increased respectively by nuciferine and siRNA PASK without increase in glutathione (GSH). Malondialdehyde (MDA) was decreased respectively by nuciferine and siRNA PASK. In addition, nuciferine decreased TNF-a, IL-6 and IL-8 as well as the siRNA PASK group. IL-10 was increased by nuciferine and siRNA PASK respectively. Further investigation revealed that nuciferine and siRNA PASK could respectively regulate the expression of target genes involved in lipogenesis and inflammation, suggesting that nuciferine may be a potential therapeutic treatment for NAFLD. Furthermore, the modulated effect of nuciferine on (OA)-induced HepG2 cells lipogenesis and inflammation, which was accompanied with PASK inhibition, was also consistent with siRNA PASK, implying that PASK might play a role in nuciferine-mediated regulation on NAFLD
    corecore