438 research outputs found

    Evolution of Raman G and G'(2D) Modes in Folded Graphene Layers

    Full text link
    Bernal- and non-Bernal-stacked graphene layers have been systematically studied by Raman imaging and spectroscopy. Two dominant Raman modes, G and G' (or 2D) of folded graphene layers exhibit three types of spectral features when interlayer lattice mismatches, defined by a rotational angle varies. Among these folded graphene layers, the most interesting one is the folded graphene layers that present an extremely strong G mode enhanced by a twist-induced Van Hove singularity. The evolution of Raman G and G' modes of such folded graphene layers are probed by changing the excitation photon energies. For the first time, doublet splitting of the G' mode in folded double-layer (1 + 1) and of the G mode in folded tetra-layer (2 + 2) graphene are clearly observed and discussed. The G' mode splitting in folded double-layer graphene is attributed to the coexistence of inner and outer scattering processes and the trigonal warping effect as well as further downwards bending of the inner dispersion branch at visible excitation energy. While the two peaks of the G mode in folded tetra-layer graphene are assigned to Raman-active mode (E2g) and lattice mismatch activated infrared-active mode (E1u), which is further verified by the temperature-dependent Raman measurements. Our study provides a summary and thorough understanding of Raman spectra of Bernal- and non-Bernal-stacked graphene layers and further demonstrates the versatility of Raman spectroscopy for exploiting electronic band structures of graphene layers.Comment: 29 pages, 10 figure

    A Case Study of Upper-Room UVGI in Densely-Occupied Elementary Classrooms by Real-Time Fluorescent Bioaerosol Measurements

    Get PDF
    Recently, the requirement to continuously collect bioaerosol samples using shorter response times has called for the use of real-time detection. The decreased cost of this technology makes it available for a wider application than military use, and makes it accessible to pharmaceutical and academic research. In this case study, real-time bioaerosol monitors (RBMs) were applied in elementary school classrooms—a densely occupied environment—along with upper-room ultraviolet germicidal irradiation (UVGI) devices. The classrooms were separated into a UVGI group and a non-UVGI control group. Fluorescent bioaerosol counts (FBCs) were monitored on 20 visiting days over a four-month period. The classroom with upper-room UVGI showed significantly lower concentrations of fine size (\u3c3 μm) and total FBCs than the control classroom during 13 of the 20 visiting days. The results of the study indicate that the upper-room UVGI could be effective in reducing FBCs in the school environment, and RBMs may be applicable in reflecting the transient conditions of the classrooms due to the dynamic activity levels of the students and teachers

    Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials - A general bond polarizability model

    Full text link
    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences (e.g. ABAB, ABCABC), leading to different physical properties. Here, we show that regardless of the space group of the 2D material, the Raman frequencies of the interlayer shear modes observed under the typical configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.Comment: 30 pages, 8 figure

    A Case Study of Upper-Room UVGI in Densely-Occupied Elementary Classrooms by Real-Time Fluorescent Bioaerosol Measurements

    Get PDF
    Recently, the requirement to continuously collect bioaerosol samples using shorter response times has called for the use of real-time detection. The decreased cost of this technology makes it available for a wider application than military use, and makes it accessible to pharmaceutical and academic research. In this case study, real-time bioaerosol monitors (RBMs) were applied in elementary school classrooms—a densely occupied environment—along with upper-room ultraviolet germicidal irradiation (UVGI) devices. The classrooms were separated into a UVGI group and a non-UVGI control group. Fluorescent bioaerosol counts (FBCs) were monitored on 20 visiting days over a four-month period. The classroom with upper-room UVGI showed significantly lower concentrations of fine size (\u3c3 μm) and total FBCs than the control classroom during 13 of the 20 visiting days. The results of the study indicate that the upper-room UVGI could be effective in reducing FBCs in the school environment, and RBMs may be applicable in reflecting the transient conditions of the classrooms due to the dynamic activity levels of the students and teachers

    Magnetic Oscillation of Optical Phonon in ABA- and ABC-Stacked Trilayer Graphene

    Full text link
    We present a comparative measurement of the G-peak oscillations of phonon frequency, Raman intensity and linewidth in the Magneto-Raman scattering of optical E2g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behaviour between the electronic excitations and the E2g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few layers graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.Comment: 25 pages, 6 figure

    Methylated DNMT1 and E2F1 Are Targeted for Proteolysis by L3MBTL3 and CRL4DCAF5 Ubiquitin Ligase

    Get PDF
    Many non-histone proteins are lysine methylated and a novel function of this modification is to trigger the proteolysis of methylated proteins. Here, we report that the methylated lysine 142 of DNMT1, a major DNA methyltransferase that preserves epigenetic inheritance of DNA methylation patterns during DNA replication, is demethylated by LSD1. A novel methyl-binding protein, L3MBTL3, binds the K142-methylated DNMT1 and recruits a novel CRL4DCAF5 ubiquitin ligase to degrade DNMT1. Both LSD1 and PHF20L1 act primarily in S phase to prevent DNMT1 degradation by L3MBTL3-CRL4DCAF5. Mouse L3MBTL3/MBT-1 deletion causes accumulation of DNMT1 protein, increased genomic DNA methylation, and late embryonic lethality. DNMT1 contains a consensus methylation motif shared by many non-histone proteins including E2F1, a key transcription factor for S phase. We show that the methylation-dependent E2F1 degradation is also controlled by L3MBTL3-CRL4DCAF5. Our studies elucidate for the first time a novel mechanism by which the stability of many methylated non-histone proteins are regulated

    Complex magnetic and spatial symmetry breaking from correlations in kagome flat bands

    Full text link
    We present the mean-field phase diagram of electrons in a kagome flat band with repulsive interactions. In addition to flat-band ferromagnetism, the Hartree-Fock analysis yields cascades of unconventional magnetic orders driven by onsite repulsion as filling changes. These include a series of antiferromagnetic (AFM) spin-charge stripe orders, as well as an evolution from 120∘120^\circAFM to intriguing noncoplanar spin orders with tetrahedral structures. We also map out the phase diagram under extended repulsion at half and empty fillings of the flat band. To examine the possibilities beyond mean-field level, we conduct a projective symmetry group analysis and identify the feasible Z2\mathbb Z_2 spin liquids and the magnetic orders derivable from them. The theoretical phase diagrams are compared with recent experiments on FeSn and FeGe, enabling determination of the most likely magnetic instabilities in these and similar kagome flat-band materials.Comment: 7+18 pages, 4+10 figure
    • …
    corecore