176 research outputs found

    CMOS-compatible 2-bit Optical Spectral Quantization Scheme Using a Silicon-nanocrystal-based Horizontal Slot Waveguide

    Get PDF
    All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W21 /m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems

    High Sensitivity Sol-Gel Silica Coated Optical Fiber Sensor for Detection of Ammonia in Water

    Get PDF
    A high sensitivity ammonia sensor based on a tapered small core singlemode fiber (SCSMF) structure for measurement of ammonia concentration in water is reported. Two tapered SCSMF fiber structures with different waist diameters of 23 µm and 13.5 µm are fabricated by using a customized microheater brushing technique. The silica based material prepared by the sol-gel method is used as a coating applied to the surface of the tapered fiber structures. To investigate the influence of the coating thickness on the sensitivity to ammonia in water, silica coatings with different thicknesses (2-pass and 8-pass coatings) are deposited on the surface of the fiber sensor with a waist diameter of 23 µm. Experiments demonstrate that the sensor with a thicker (8-pass) silica coating shows better sensitivity of 0.131 nm/ppm to ammonia compared to that of 0.069 nm/ppm for the thinner silica coating (2-pass). To further improve the sensor sensitivity, the taper waist diameter is reduced. For an 8-pass coating (249nm at the taper waist section) applied to a tapered SCSMF structure based fiber sensor with a reduced waist diameter of 13.5 µm. Experimental results show that the sensitivity to ammonia is significantly improved to 2.47nm/ppm. The best measurement resolution for ammonia concentration in water is estimated to be 4 ppb while the response and recovery times are less than 2 and 5 minutes respectively. The proposed sensor also offers good performance in terms of repeatability and good selectivity for sensing ammonia compared to that of other common ions and organic molecules in water

    Suppression of Raman Soliton Self-frequency Shift in Photonic Cystal Fibers with Tellurite Subwavelength Core

    Get PDF
    A new nonlinear evolution equation including the vector nature of the electromagnetic field and the frequency variation of the mode profile is derived. A kind of new nonlinearity is demonstrated. Its magnitude is strongly dependent on the waveguide geometrical parameters, which will lead to a suppression of the Raman soliton self-frequency shift in a photonic crystal fiber with a tellurite subwavelength core. Our results can be supported by the detailed numerical simulation

    High Sensitivity Sol-Gel Silica Coated Optical Fiber Sensor for Detection of Ammonia in Water

    Get PDF
    A high sensitivity ammonia sensor based on a tapered small core singlemode fiber (SCSMF) structure for measurement of ammonia concentration in water is reported. Two tapered SCSMF fiber structures with different waist diameters of 23 µm and 13.5 µm are fabricated by using a customized microheater brushing technique. The silica based material prepared by the sol-gel method is used as a coating applied to the surface of the tapered fiber structures. To investigate the influence of the coating thickness on the sensitivity to ammonia in water, silica coatings with different thicknesses (2-pass and 8-pass coatings) are deposited on the surface of the fiber sensor with a waist diameter of 23 µm. Experiments demonstrate that the sensor with a thicker (8-pass) silica coating shows better sensitivity of 0.131 nm/ppm to ammonia compared to that of 0.069 nm/ppm for the thinner silica coating (2-pass). To further improve the sensor sensitivity, the taper waist diameter is reduced. For an 8-pass coating (249nm at the taper waist section) applied to a tapered SCSMF structure based fiber sensor with a reduced waist diameter of 13.5 µm. Experimental results show that the sensitivity to ammonia is significantly improved to 2.47nm/ppm. The best measurement resolution for ammonia concentration in water is estimated to be 4 ppb while the response and recovery times are less than 2 and 5 minutes respectively. The proposed sensor also offers good performance in terms of repeatability and good selectivity for sensing ammonia compared to that of other common ions and organic molecules in water

    Investigation of Humidity and Temperature Response of a Silica Gel Coated Microfiber Coupler

    Get PDF
    The humidity and temperature responses of a microfiber coupler (MFC) coated with silica gel are investigated. Two MFC structures with different waist diameters of 2.5 and 3.5 μm were fabricated by fusing and tapering two single-mode fibers using a microheater brushing technique. The influences of the coating thickness and tapered waist diameter on the sensing performance are analyzed. For the proposed sensor with a waist diameter of 2.5 μm and 8-layers thick coating, the change in the relative humidity (RH) results in an exponential blueshift with a maximum sensitivity of 1.6 nm/% RH in the range from 70 to 86% RH. In response to the temperature change, the sensor's transmission spectrum redshifts in a linear fashion with an average sensitivity of 0.55 nm/°C in the range from 20 to 40 °C. The study is important for the development of the proposed fiber structure as a humidity or temperature sensor

    Efficient spectral compression of wavelength-shifting soliton and its application in integratable all-optical quantization

    Get PDF
    In this paper, we numerically demonstrate efficient spectral compression (SPC) of wavelength-shifting soliton in a chalcogenide strip waveguide. It is found that the profiles of group-velocity dispersion (GVD) and Kerr nonlinearity play key roles in determining SPC. After calculating the dispersion of Kerr nonlinearity and Raman spectrum for three kinds of chalcogenide materials, Ge11.5As24Se64.5 is chosen as the material for designing the chalcogenide strip waveguide (CSW). The geometric parameters of CSW are optimized to obtain the desired GVD and Kerr nonlinearity. Simulation results show that in the designed CSW, an input spectrum width of 52.04 nm can be compressed to 7.23 nm along with wavelength shift of 17 nm when the input peak power is 25 W. With the input peak power increasing to 75 W, the SPC is slightly weakened, but wavelength shift can be up to 190 nm. The proposed CSW is applied to integrated all-optical quantization and an effective quantization number of 3.66-bit is achieved. It is expected that our research results can find important applications in on-chip integrated spectroscopy, all-optical signal processing, etc

    Enhanced Refractive Index Sensor Using a Combination of a Long Period Fiber Grating and a Small Core Singlemode Fiber Structure

    Get PDF
    An enhanced refractive index (RI) sensor based on a combination of a long period fiber grating (LPG) and a small core singlemode fiber (SCSMF) structure is proposed and developed. Since the LPG and SCSMF transmission spectra experience a blue and a red shift respectively as the surrounding RI (SRI) increases, the sensitivity is improved by measuring the separation between the resonant wavelengths of the LPG and SCSMF structures. Experimental results show that the sensor has a sensitivity of 1028 nm/SRI unit in the SRI range from 1.422 to 1.429, which is higher than individual sensitivities of either structure alone used in the experiment. Experimental results agree well with simulation results

    High sensitivity ammonia gas sensor based on a silica gel coated microfiber coupler

    Get PDF
    In this paper, a high sensitivity ammonia gas sensor is proposed based on a silica gel coated microfiber coupler (MFC). The MFC structure is formed by the two tapered fibers with 3 μm waist diameter each, which were fabricated by using a customized microheater brushing technique. Silica gel coating was prepared by a sol-gel technique and applied on the surface of the MFC as a thin layer. The spectral characteristics of the proposed sensor were studied under various ammonia gas concentrations. The experimental results show that the coating thickness strongly affected the sensitivity of the MFC-based sensor to ammonia gas concentration. For the sensor with a 90 nm silica gel coating thickness, the highest measurement sensitivity is 2.23 nm/ppm for ammonia gas concentration, and the resolution is as good as 5 ppb, while the measured response and recovery times are ~ 50 and 35 seconds, respectively. Finally, it is demonstrated that the proposed sensor offers good repeatability and selectivity to ammonia gas

    Optimisation du prétraitement de boues par ultrasons à très basses fréquences et sous pression

    Get PDF
    L'objectif de ce travail est d'optimiser le prétraitement de boues par des ultrasons de puissance (US) à basses fréquences, et en particulier d étudier pour la première fois des améliorations possibles en modifiant la pression hydrostatique, et la fréquence jusqu à l audible. Après un examen préliminaire des conditions du procédé (conditionnement des boues, type de boues, alcalinisation préalable, contrôle de la température), les effets des paramètres ultrasonores (puissance, intensité, énergie spécifique, fréquence) et de la pression hydrostatique ont été spécifiquement étudiés, séparément et simultanément, d abord à température constante (28C), puis sans refroidissement. On a ainsi vérifié que l énergie spécifique joue un rôle clé dans la désintégration des boues sous US (i.e. solubilisation de la matière organique) et que l'élévation de température pendant la sonication adiabatique est bénéfique grâce aux effets combinés d hydrolyse thermique et de cavitation. Pour une énergie spécifique donnée, une faible fréquence (12 kHz contre 20 kHz) et une haute puissance améliorent la solubilisation de la matière organique grâce à une cavitation plus violente, tandis qu on observe un optimum de pression hydrostatique en raison de ses effets opposés sur le seuil et l'intensité de la cavitation. Un résultat important est que la pression optimale dépend de l intensité ultrasonore et du profil de température, mais pas de l énergie spécifique, ni de la fréquence, ni du type de boues. Après avoir fixé les conditions les plus favorables (soit 12 kHz, 360 W, 28 gTS/L et conditions adiabatiques), l optimisation finale a fourni la pression de travail (3,25 bar) et les paramètres du mode séquentiel (US ON/OFF, permettant d éviter de hautes températures qui amortissement l intensité de la cavitation et peuvent endommager le transducteur). Ces conditions ont permis d atteindre un rendement d extraction de la DCO très élevé, mais n améliorent que faiblement le rendement ultérieur de méthanisation.The objective of this work is to optimize high-power low-frequency sonication (US) pretreatment of sludge, and especially to investigate for the first time possible improvements by higher pressure and audible frequency. After a preliminary examination of regular process conditions (sludge conditioning, sludge type, prior alkalization, temperature control, etc), effects of US parameters (power -PUS, intensity -IUS, specific energy input -ES, frequency -FS, etc.) and of hydrostatic pressure (Ph) were specifically looked into, separately and in combination, first under cooling at constant temperature (28C), then under the progressive temperature rise provoked by sonication. First, it was confirmed that specific energy input (ES) plays a key role in sludge US disintegration (i.e. solubilisation of organic matter) and that temperature rise during adiabatic-like sonication is beneficial through additional effects of thermal hydrolysis and cavitation. At a given ES value, low FS (12 kHz vs. 20 kHz) and high PUS enhance soluble chemical oxygen demand (SCOD) due to more violent cavitation, while hydrostatic pressure gives rise to an optimum value due to its opposite effects on cavitation threshold and intensity. One major result is that optimal pressure depends on IUS (P US) as well as temperature profile, but not on ES, FS, nor sludge type. Setting the other parameters at the most favorable conditions expected, i.e. 12 kHz, 360 W , 28 gTS/L, and adiabatic conditions, final optimization was achieved by searching for this pressure optimum and examining sequential procedure to avoid too high temperature dampening cavitation intensity and damaging the transducer. Such conditions with sequential mode and Ph of 3.25 bar being selected succeeded in achieving very high SCOD, but only marginally improved subsequent methanization yield.TOULOUSE-INP (315552154) / SudocSudocFranceF
    corecore