17 research outputs found

    The synthesis and characterization of 1111-type diluted magnetic semiconductors (La1-xSrx)(Zn1-xTMx)AsO (TM = Mn, Fe, Co)

    Full text link
    The doping effect of Sr and transition metals Mn, Fe, Co into the direct-gap semiconductor LaZnAsO has been investigated. Our results indicate that the single phase ZrCuSiAs-type tetragonal crystal structure is preserved in (La1-xSrx)(Zn1-xTMx)AsO (TM = Mn, Fe, Co) with the doping level up to x = 0.1. While the system remains semiconducting, doping with Sr and Mn results in ferromagnetic order with TC ~ 30K, and doping with Sr and Fe results in a spin glass like state below ~6K with a saturation moment of ~0.02 muB/Fe, an order of magnitude smaller than the ~0.4 muB/Mn of Sr and Mn doped samples. The same type of magnetic state is observed neither for (Zn,Fe) substitution without carrier doping, nor for Sr and Co doped specimens.Comment: Accepted for publication in EP

    Doping-dependent charge order correlations in electron-doped cuprates

    Get PDF
    Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates

    Synchrotron X-ray Scattering Studies of Complex Oxides

    No full text
    University of Minnesota Ph.D. dissertation.December 2019. Major: Physics. Advisor: Martin Greven. 1 computer file (PDF); 173 pages.Complex oxides, such as the copper-based high-temperature superconductors and the perovskite cobaltites, exhibit a vast range of properties and phases and are prominent research topics in condensed matter physics and materials science. Synchrotron X-ray techniques are powerful tools to study the electronic and magnetic properties of materials. In this Thesis, I present synchrotron X-ray scattering studies of four complex oxides: the cuprates HgBa2CuO4+d (Hg1201), La2-xSrxCuO4 (LSCO), and Nd2-xCexCuO4 (NCCO), and the cobaltite La0.5Sr0.5CoO3-d (LSCoO). I first describe a study of the dynamic charge correlations in the moderately-doped model cuprate Hg1201 (Tc = 70 K) using resonant inelastic X-ray scattering (RIXS) at the Cu L-edge. The cuprates exhibit a charge-density-wave (CDW) instability in the underdoped, pseudogap part of the phase diagram that competes with superconductivity. This study aims to discern the connection between CDW and pseudogap phenomena, and to understand the extent to which CDW correlations shape the phase diagram. With a new analysis method, I demonstrate that the charge correlations at the two-dimensional wave vector qCDW~(0.28, 0) feature three characteristic energy scales: (1) quasi-elastic; (2) 40 meV, in the optic-phonon range; (3) 150-200 meV, well beyond the phonon range. Intriguingly, the two dynamic energy scales identified here are comparable to previously measured pseudogap scales and to energy scales associated with the glue function deduced from optical and Raman spectroscopy. The paramagnon dispersion along [1,0] is also measured and found to be insensitive to the CDW correlations. The dynamic charge correlations may manifest themselves as anomalous softening or broadening of phonon modes. In order to investigate this possibility, I carried out non-resonant inelastic X-ray scattering (IXS) measurements of Cu-O bond-stretching phonons in hole-doped LSCO and electron-doped NCCO. In LSCO (x = 0.125), anomalous phonon broadening is observed at low temperature (T = 20 K) around the wavevector qph~(0.25, 0), to the CDW wave vector qCDW. The anomalous broadening is significantly weakened at higher temperatures (T = 150 K, 300 K) and higher doping (x = 0.20). Measurements across the structural transition temperature Ts suggest that the effect is not due to unit cell doubling below Ts. Rather, the dynamic charge correlations appear to be the cause of the observed phonon broadening. The anomalous softening and broadening behavior is also observed in NCCO, but found to be independent of temperature (up to T = 500 K) and doping (x = 0.078, 0.145), and therefore is likely the result of an anti-crossing between two phonon modes rather than due to dynamic charge correlations. Motivated in part by a recent phenomenological charge (de)localization model, which successfully captures the temperature and doping dependence of the pseudogap and strange-metal phenomena, I also studied the doping and temperature dependence of charge-transfer excitations in LSCO and NCCO via Cu K-edge RIXS. The measurements, which range from low temperature (15 K) to very high temperature (1200 K), reveal a distinct spectral weight decrease upon heating in both compounds that remains to be understood. Finally, I present a synchrotron X-ray study of ion-gel-gated LSCoO thin films. Electrolyte-based transistors utilizing ionic liquids/gels have been highly successful in the study of charge-density-controlled phenomena in diverse materials, particularly oxides. Experimental probes beyond electronic transport have played a significant role, despite challenges to their application in the electric double-layer transistor geometry. I demonstrate the application of synchrotron soft X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) as operando probes of the charge state and magnetism in ion-gel-gated ferromagnetic perovskite thin film LSCoO/LaAlO3(001). Application of gate voltages up to + 4 V is shown to dramatically suppress the O K-edge XAS pre-peak intensity and XMCD signal at the Co L-edges, and thus enables the Co valence and ferromagnetism to be tracked upon gate-induced reduction. This work lays the foundation for operando soft XAS/XMCD studies of other electrolyte-gated oxides, which could be especially illuminating in the case of battery, ionic conductor and supercapacitor materials

    DUAL-FUNCTION LAYER OF MESOPOROUS STRUCTURE ANATASE TiO 2

    No full text

    Post-growth annealing effects on charge and spin excitations in Nd2−xCexCuO4

    No full text
    We report a Cu K- and L3-edge resonant inelastic x-ray scattering study of charge and spin excitations of bulk Nd2−xCexCuO4, with a focus on post-growth annealing effects. For the parent compound Nd2CuO4 (x = 0), a clear charge-transfer gap is observed in the as-grown state, whereas the charge excitation spectra indicate that electrons are doped in the annealed state. This is consistent with the observation that annealed thin-film and polycrystalline samples of RE2CuO4 (RE = rare earth) can become metallic and superconducting at sufficiently high electron concentrations without Ce doping. For x = 0.16, a Ce concentration for which it is known that oxygen reduction destroys long-range antiferromagnetic order and induces superconductivity, we find that the high-energy spin excitations of non-superconducting as-grown and superconducting annealed crystals are nearly identical. This finding is in stark contrast to the significant changes in the low-energy spin excitations previously observed via neutron scattering
    corecore