7 research outputs found

    The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer.

    Get PDF
    BackgroundThe major cancer related mortality is caused by metastasis and invasion. It is important to identify genes regulating metastasis and invasion in order to curtail metastatic spread of cancer cells.MethodsThis study investigated the association between RUNX2 and miR-10a/miR-10b and the risk of breast cancer relapse. Expression levels of RUNX2 and miR-10a/b in 108 pairs of tumor and non-tumor tissue of breast cancer were assayed by quantitative PCR analysis and evaluated for their prognostic implications.ResultsThe median expression levels of RUNX2 and miR-10b in tumor tissue normalized using adjacent non-tumor tissue were significantly higher in relapsed patients than in relapse-free patients. Higher expression of these three genes were significantly correlated with the hazard ratio for breast cancer recurrence (RUNX2: 3.02, 95% CI = 1.50 ~ 6.07; miR-10a: 2.31, 95% CI = 1.00 ~ 5.32; miR-10b: 3.96, 95% CI = 1.21 ~ 12.98). The joint effect of higher expression of all three genes was associated with a hazard ratio of 12.37 (95% CI = 1.62 ~ 94.55) for relapse. In a breast cancer cell line, RUNX2 silencing reduced the expression of miR-10a/b and also impaired cell motility, while RUNX2 overexpression elicited opposite effects.ConclusionsThese findings indicate that higher expression of RUNX2 and miR-10a/b was associated with adverse outcome of breast cancer. Expression levels of RUNX2 and miR-10a/b individually or jointly are potential prognostic factors for predicting breast cancer recurrence. Data from in vitro studies support the notion that RUNX2 promoted cell motility by upregulating miR-10a/b

    A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells.

    Get PDF
    Although the human genome project has been completed for some time, the issue of the number of transcribed genes with identifiable biological functions remains unresolved. We used zebrafish as a model organism to study the functions of Ka/Ks-predicted novel human exons, which were identified from a comparative evolutionary genomics analysis.In this study, a novel gene, designated as puf-A, was cloned and functionally characterized, and its homologs in zebrafish, mouse, and human were identified as one of the three homolog clusters which were consisted of 14 related proteins with Puf repeats. Computer modeling of human Puf-A structure and a pull-down assay for interactions with RNA targets predicted that it was a RNA-binding protein. Specifically, Puf-A contained a special six Puf-repeat domain, which constituted a unique superhelix half doughnut-shaped Puf domain with a topology similar to, but different from the conventional eight-repeat Pumilio domain. Puf-A transcripts were uniformly distributed in early embryos, but became restricted primarily to eyes and ovaries at a later stage of development. In mice, puf-A expression was detected primarily in retinal ganglion and pigmented cells. Knockdown of puf-A in zebrafish embryos resulted in microphthalmia, a small head, and abnormal primordial germ-cell (PGC) migration. The latter was confirmed by microinjecting into embryos puf-A siRNA containing nanos 3' UTR that expressed in PGC only. The importance of Puf-A in the maturation of germline stem cells was also implicated by its unique expression in the most primitive follicles (stage I) in adult ovaries, followed by a sharp decline of expression in later stages of folliculogenesis. Taken together, our study shows that puf-A plays an important role not only in eye development, but also in PGC migration and the specification of germ cell lineage. These studies represent an exemplary implementation of a unique platform to uncover unknown function(s) of human genes and their roles in development regulation
    corecore