3,177 research outputs found
Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy
Background: Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients.
Methods: We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI.
Results: Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000).
Conclusions: A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known
The effect of interferon beta-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis.
The recently completed European trial of interferon beta-1b (IFN beta -1b) in patients with secondary progressive multiple sclerosis (SP multiple sclerosis) has given an opportunity to assess the impact of treatment on cerebral atrophy using serial MRI. Unenhanced T-1-weighted brain imaging was acquired in a subgroup of 95 patients from five of the European centres; imaging was performed at 6-month intervals from month 0 to month 36. A blinded observer measured cerebral volume on four contiguous 5 mm cerebral hemisphere slices at each time point, using an algorithm with a high level of reproducibility and automation. There was a significant and progressive reduction in cerebral volume in both placebo and treated groups, with a mean reduction of 3.9 and 2.9%, respectively, by month 36 (P = 0.34 between groups). Exploratory subgroup analyses indicated that patients without gadolinium (Gd) enhancement at the baseline had a greater reduction of cerebral volume in the placebo group (mean reduction at month 36: placebo 5.1%, IFN beta -1b 1.8%, P < 0.05) whereas those with Gd-enhancing lesions showed a trend to greater reduction of cerebral volume if the patient was on IFN<beta>-1b (placebo 2.6%, IFN beta -1b, 3.7%; P > 0.05). These results are consistent with ongoing tissue loss in both arms of this study of secondary progressive multiple sclerosis. This finding is concordant with previous observations that disease progression, although delayed, is not halted by IFN beta. The different pattern seen in patients with and without baseline gadolinium enhancement suggests that part of the cerebral volume reduction observed in IFN beta -treated patients may be due to the anti-inflammatory/antioedematous effect of the drug. Longer periods of observation and larger groups of patients may be needed to detect the effects of treatment on cerebral atrophy in this population of patients with advanced disease
Construct validation of a school principal decision-making styles scale
Whereas substantial research in decision-making styles
has focused on the theoretical and conceptual definitions, relatively less empirical attention has been paid to the development of its measures. Thus, the purpose of this study is to develop and validate a measure of school principal decision-making styles based on Vroom and Yetton’s (1973) theoretical framework. The researcher initially developed a 40-item pool of the Principal Decision-Making Styles Scale (PDMSS), and then these 40 items were reduced to 27 items after experts’ examination of its content validity. These 27 refined items were administered to 120 primary school principals in the
northern states of Malaysia. In order to examine the construct validity of the PDMSS, a factor analysis employing principal component extraction procedures with varimax rotation was used. The factor analysis resulted in a 19-item instrument that measures three extracted decision-making styles, namely, autocratic, participative,
and delegation. Additionally, the item analysis showed acceptable internal consistency reliability for the overall and the three specific sub-scales of PDMSS. Moreover, the confirmatory factor analysis revealed that the three identified styles indicate a good model fit
CADASIL: A monogenic condition causing stroke and subcortical vascular dementia
Mutations in Notch3 are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an inherited small vessel disease leading to subcortical strokes and vascular dementia. The phenotypic presentation is variable but remarkable for a high frequency of migraine with aura. Magnetic resonance images show a microangiopathic pattern of lesions. Prominent involvement of the temporopolar white matter and involvement of the temporopolar arcuate fibers are conspicuous findings seen in many patients, The underlying angiopathy is characterized by a unique type of ultrastructural basal lamina deposits and by degeneration of vascular smooth muscle cells which are the major source of Notch3 expression. In line with these findings there is evidence for a functional impairment of vascular smooth muscle cells. CADASIL has opened a new perspective in studying basic mechanisms of vessel wall degeneration and ischemic tissue damage related to small vessel disease. Copyright (C) 2002 S. Karger AG, Basel
Orientation in space using the sense of smell
Several studies reported that respiration interacts with olfactory perception. Therefore, in the pilot study of this experiment series human breathing was investigated during an
olfactory experiment. Breathing parameters (respiratory minute volume, respiratory amplitude, and breathing rate) were quantified in response to odor stimulation and olfactory imagery. We provide evidence that respiration changed during smelling and during olfactory imagery in comparison to the baseline condition. In conclusion, olfactory perception and olfactory imagery both have an impact on the human respiratory profile, which is hypothesized to be based on a common underlying mechanism named sniffing. Our findings underline that for certain aspects of olfactory research it may be necessary to control
and/or monitor respiration during olfactory stimulation.
The human ability to localize odors has been investigated in a limited number of studies, but the findings are contradictory. We hypothesized that this was mainly due to differential effects of olfactory and trigeminal stimulation. Only few substances excite selectively the
olfactory system. One of them is hydrogen sulphide (H2S). In contrast, most odorants stimulate both olfactory and trigeminal receptors of the nasal mucosa.
The main goal of this study was to test the human ability to localize substances, which excite the olfactory system selectively. For this purpose we performed localization experiment using low and high concentrations of the pure odorant H2S, the olfactory-trigeminal substance isoamyl acetate (IAA), and the trigeminal substance carbon dioxide (CO2).
In preparation for the localization study a detection experiment was carried out to ensure that subjects perceived the applied stimuli consciously. The aim of the detection study was to quantify the human sensitivity in response to stimulation with H2S, IAA, and CO2. We tested healthy subjects using an event-related experimental design. The olfactory stimulation was performed using an olfactometer.
The results showed that humans are able to detect H2S in low concentration (2 ppm) with moderate sensitivity, and possess a high sensitivity in response to stimulation with
8ppm H2S, 50% v/v CO2, and 17.5% v/v IAA. The localization experiment revealed that subjects can localize H2S neither in low nor in high concentrations. In contrast to that,
subjects possess an ability to localize both IAA and CO2 stimuli. These results clearly demonstrate that humans are able to localize odorants which excite the trigeminal system, but they are not able to localize odors that stimulate the olfactory system exclusively, in spite of consciously perceiving the stimuli
Pre- and Post-Fire Strength Assessment of Ferrocement beams
The results of an experimental investigation on the behavior of ferrocement beams after exposed to fire are presented in this paper. Different types of steel meshes are used compared with conventional reinforcement. The experimental program comprised casting and testing of eighteen beams having the dimensions of 100mm×100mm×1000mm. Three beams were reinforced as a conventional reinforcement. Each control beam was reinforced with two steel bars of diameter 8 mm in tension, two steel bar of diameter 6mm in compression and stirrups of 6 mm diameter placed at 200 mm intervals. The ferrocement beams were reinforced with steel meshes without any stirrups. Two types of steel meshes were used to reinforce the ferrocement laminate. These types are: square welded wire fabric, and expanded wire mesh. Single layer, double layers and three layers of square welded wire mesh were employed. Single layer and double layers of expanded wire mesh were employed. The experimental program was classified into three groups. First group was tested without exposure to fire, the second group was tested after exposure to fire for six hours and the last group was tested after exposure to fire under loading. All specimens were tested under 4-points flexural loadings. The performance of the test beams in terms of strength, stiffness, cracking behavior and energy absorption was investigated. The results showed that high serviceability and ultimate loads, crack resistance control, and better deformation characteristics could be achieved by using the proposed ferrocement forms
A magnetic stimulation examination of orthographic neighborhood effects in visual word recognition
The split-fovea theory proposes that visual word recognition is mediated by the splitting of the foveal image, with letters to the left of fixation projected to the right hemisphere (RH) and letters to the right of fixation projected to the left hemisphere (LH). We applied repetitive transcranial magnetic stimulation (rTMS) over the left and right occipital cortex during a lexical decision task to investigate the extent to which word recognition processes could be accounted for according to the split-fovea theory. Unilateral rTMS significantly impaired lexical decision latencies to centrally presented words, supporting the suggestion that foveal representation of words is split between the cerebral hemispheres rather than bilateral. Behaviorally, we showed that words that have many orthographic neighbors sharing the same initial letters ("lead neighbors") facilitated lexical decision more than words with few lead neighbors. This effect did not apply to end neighbors (orthographic neighbors sharing the same final letters). Crucially, rTMS over the RH impaired lead-, but not end-neighborhood facilitation. The results support the split-fovea theory, where the RH has primacy in representing lead neighbors of a written word
- …