42 research outputs found

    Spray-Drying Cellulose Nanofibrils: Effect of Drying Process Parameters on Particle Morphology and Size Distribution

    Get PDF
    Spray-drying was chosen as an appropriately scalable manufacturing method to dry cellulose nanofibril (CNF) suspensions. Spray-drying of two different types of CNF suspensions—nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC)—was carried out using a laboratory-scale spray dryer. Effects of three spray-drying process parameters on particle morphology and particle size distribution were evaluated: 1) gas flow rate; 2) liquid feed rate; and 3) suspension solids concentration. Particle morphology was characterized by scanning electron microscopy (SEM) and a morphology analyzer. SEM showed that spray-drying of NFC formed fibrous particles and fibrous agglomerates, whereas spray-drying CNCs produced spherical and mushroom cap (or donut)-shaped particles. Particle morphology formation mechanisms are proposed for spray-drying nanocellulose suspensions. The effect of the three spray-drying process parameters on particle size distribution depended on the drying nature of the materials. The three parameters interacted to significantly affect particle size of CNC suspensions, whereas they did not interact to affect particle size of NFC suspensions. For the CNC suspension, a higher gas flow rate produced smaller particle sizes. The gas flow rate did not affect particle size for NFC suspensions. The effect of liquid feed rate and solids concentration on CNF particle size was negligible in this study. The smallest mean circle equivalent diameters produced in this study were 3.95 μm for NFC and 3.64 μm for CNC

    Determining the Mechanical Properties of Microcrystalline Cellulose (MCC)-Filled PET-PTT Blend Composites

    Get PDF
    Polymer composite materials consisting of poly(ethylene terephthalate) (PET)-poly(trimethylene terephthalate) (PTT) blends and microcrystalline cellulose (MCC) were prepared by injection molding. The composites were analyzed for tensile, flexural, and impact strength as well as density determinations. There was no statistical difference in terms of mechanical properties between the control PET-PTT blend and 2.5 wt% MCC-filled composites. Because of better compatibility as well as better stress-transfer properties, the tensile strength of the composites was larger (reaching values from 24.8-36.3 MPa with the addition of 20 wt% MCC). Elongation at break of the composites was greater (reaching values from 2.3-3.3% with the addition of 20 wt% MCC). The tensile modulus of MCC-filled composites systemically increased with increasing MCC loading (reaching values from 1.11-1.68 GPa with the addition of 30 wt% MCC). The flexural modulus of composites was higher than the control PET-PTT blend. The modulus also increased with increasing MCC loading (reaching values from 2.10-3.37 GPa with the addition of 30 wt% MCC). The Izod impact strength of the composites decreased as the MCC loading increased and this observation was in good agreement with commonly observed filled polymer systems

    Characterization of CNC Nanoparticles Prepared via Ultrasonic-Assisted Spray Drying and Their Application in Composite Films

    No full text
    The ultrasonic-assisted spray dryer, also known as a nano spray dryer and predominantly used on a lab scale in the pharmaceutical and food industries, enables the production of nanometer-sized particles. In this study, the nano spray dryer was applied to cellulosic materials, such as cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). CNC suspensions were successfully dried, while the CNF suspensions could not be dried, attributable to their longer fibril lengths. The nano spray drying process was performed under different drying conditions, including nebulizer hole sizes, solid concentrations, and gas flow rates. It was confirmed that the individual particle size of nano spray-dried CNCs (nano SDCNCs) decreased as the nebulizer hole sizes and solid contents of the suspensions decreased. The production rate of the nano spray dryer increased with higher solid contents and lower gas flow rates. The resulting nano SDCNCs were added to a polyvinyl alcohol (PVA) matrix as a reinforcing material to evaluate their reinforcement behavior in a plastic matrix using solvent casting. After incorporating the 20 wt.% nano SDCNCs into the PVA matrix, the tensile strength and tensile modulus elasticity of the neat PVA nanocomposite film increased by 22% and 32%, respectively, while preserving the transparency of the films

    Properties of Wood–Plastic Composites Manufactured from Two Different Wood Feedstocks: Wood Flour and Wood Pellets

    No full text
    Driven by the motive of minimizing the transportation costs of raw materials to manufacture wood–plastic composites (WPCs), Part I and the current Part II of this paper series explore the utilization of an alternative wood feedstock, i.e., pellets. Part I of this study reported on the characteristics of wood flour and wood pellets manufactured from secondary processing mill residues. Part II reports on the physical and mechanical properties of polypropylene (PP)-based WPCs made using the two different wood feedstocks, i.e., wood flour and wood pellets. WPCs were made from 40-mesh wood flour and wood pellets from four different wood species (white cedar, white pine, spruce-fir and red maple) in the presence and absence of the coupling agent maleic anhydride polypropylene (MAPP). With MAPP, the weight percentage of wood filler was 20%, PP 78%, MAPP 2% and without MAPP, formulation by weight percentage of wood filler was 20% and PP 80%. Fluorescent images showed wood particles’ distribution in the PP polymer matrix was similar for both wood flour and ground wood pellets. Dispersion of particles was higher with ground wood pellets in the PP matrix. On average, the density of composite products from wood pellets was higher, tensile strength, tensile modulus and impact strength were lower than the composites made from wood flour. Flexural properties of the control composites made with pellets were higher and with MAPP were lower than the composites made from wood flour. However, the overall mechanical property differences were low (0.5–10%) depending on the particular WPC formulations. Statistical analysis also showed there was no significant differences in the material property values of the composites made from wood flour and wood pellets. In some situations, WPC properties were better using wood pellets rather than using wood flour. We expect if the material properties of WPCs from wood flour versus wood pellets are similar and with a greater reduction in transportation costs for wood pellet feedstocks, this would be beneficial to WPC manufacturers and consumers

    Mechanical Properties of Microcrystalline Cellulose (MCC) Filled Engineering Thermoplastic Composites

    No full text
    In this study, engineering thermoplastic composites were prepared from microcrystalline cellulose (MCC)-filled nylon 6. MCC were added to nylon 6 using melt mixing to produce compounded pellets. The MCC-filled nylon 6 composites with varying concentrations of MCC (from 2.5 to 30 wt\%) were prepared by injection molding. The tensile and flexural properties of the nylon 6 composites were increased significantly with the addition of MCC. The maximum strength and modulus of elasticity for the nylon 6 composites were achieved at a MCC weight fraction of 20 \%. The Izod impact strength of composites decreased with the incorporation of MCC without any surface treatments and coupling agent. This observation is quite expected for filled polymer systems and has been commonly observed. There was a strong correlation between density and tensile (r = 0.94) and flexural modulus of elasticity (r = 0.9). MCC filled composites manufactured by injection method had highly uniform density distribution through their thickness. The higher mechanical results with lower density demonstrate that MCC can be used as a sufficient reinforcing material for low cost, eco-friendly composites in the automotive industry especially for under-the-hood applications (engine covers, intake manifolds and radiator end tanks) as well as in other applications such as the building and construction industries, packaging, consumer products etc

    Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled nylon 6 composites

    No full text
    The dynamic mechanical behavior and thermal properties of nylon 6 composites containing from 2.5 wt.\% to 30 wt.\% MCC were investigated using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The DSC results indicated that there was no consistent or significant change in the glass transition (T(g)), melting temperature (T(m)) and crystallization temperature (T(c)) of the composites with the addition of MCC. The DSC results also indicated that the crystallinity (X(c)) decreased with high MCC loading level (more than 20 wt.\%) because of the inability of polymers chains to be fully incorporated into growing crystallinity lamella. With increasing MCC content, storage modulus from DMTA improved because of the reinforcing effect of the MCC. The tan delta peak values from DMTA were not significantly changed as the MCC content increased. DMTA also indicates that the magnitude of the tan delta maximum peak of MCC filled composites was significantly decreased around the glass transition temperature. Thermogravimetric analysis also indicated that the MCC did not show significant initial degradation under 300 degrees C. which implies thermal stability so that MCC-filled composites could be used for high temperature circumstances, like in ``under the hood{''} applications in the automobile industry. (C) 2011 Elsevier B.V. All rights reserved
    corecore