44 research outputs found

    SNP mapping of QTL affecting growth and fatness on chicken GGA1

    Get PDF
    An F2 chicken population was established from a crossbreeding between a Xinghua line and a White Recessive Rock line. A total of 502 F2 chickens in 17 full-sib families from six hatches was obtained, and phenotypic data of 488 individuals were available for analysis. A total of 46 SNP on GGA1 was initially selected based on the average physical distance using the dbSNP database of NCBI. After the polymorphism levels in all F0 individuals (26 individuals) and part of the F1 individuals (22 individuals) were verified, 30 informative SNP were potentially available to genotype all F2 individuals. The linkage map was constructed using Cri-Map. Interval mapping QTL analyses were carried out. QTL for body weight (BW) of 35 d and 42 d, 49 d and 70 d were identified on GGA1 at 351–353 cM and 360 cM, respectively. QTL for abdominal fat weight was on GGA1 at 205 cM, and for abdominal fat rate at 221 cM. Two novel QTL for fat thickness under skin and fat width were detected at 265 cM and 72 cM, respectively

    Aberrant Expression Profiles of lncRNAs and Their Associated Nearby Coding Genes in the Hippocampus of the SAMP8 Mouse Model with AD

    Get PDF
    The senescence-accelerated mouse prone 8 (SAMP8) mouse model is a useful model for investigating the fundamental mechanisms involved in the age-related learning and memory deficits of Alzheimer's disease (AD), while the SAM/resistant 1 (SAMR1) mouse model shows normal features. Recent evidence has shown that long non-coding RNAs (lncRNAs) may play an important role in AD pathogenesis. However, a comprehensive and systematic understanding of the function of AD-related lncRNAs and their associated nearby coding genes in AD is still lacking. In this study, we collected the hippocampus, the main area of AD pathological processes, of SAMP8 and SAMR1 animals and performed microarray analysis to identify aberrantly expressed lncRNAs and their associated nearby coding genes, which may contribute to AD pathogenesis. We identified 3,112 differentially expressed lncRNAs and 3,191 differentially expressed mRNAs in SAMP8 mice compared to SAMR1 mice. More than 70% of the deregulated lncRNAs were intergenic and exon sense-overlapping lncRNAs. Gene Ontology (GO) and pathway analyses of the AD-related transcripts were also performed and are described in detail, which imply that metabolic process reprograming was likely related to AD. Furthermore, six lncRNAs and six mRNAs were selected for further validation of the microarray results using quantitative PCR, and the results were consistent with the findings from the microarray. Moreover, we analyzed 780 lincRNAs (also called long "intergenic" non-coding RNAs) and their associated nearby coding genes. Among these lincRNAs, AK158400 had the most genes nearby (n = 13), all of which belonged to the histone cluster 1 family, suggesting regulation of the nucleosome structure of the chromosomal fiber by affecting nearby genes during AD progression. In addition, we also identified 97 aberrant antisense lncRNAs and their associated coding genes. It is likely that these dysregulated lncRNAs and their associated nearby coding genes play a role in the development and/or progression of AD

    Variation Trends of Fractal Dimension in Epileptic EEG Signals

    No full text
    Epileptic diseases take EEG as an important basis for clinical judgment, and fractal algorithms were often used to analyze electroencephalography (EEG) signals. However, the variation trends of fractal dimension (D) were opposite in the literature, i.e., both D decreasing and increasing were reported in previous studies during seizure status relative to the normal status, undermining the feasibility of fractal algorithms for EEG analysis to detect epileptic seizures. In this study, two algorithms with high accuracy in the D calculation, Higuchi and roughness scaling extraction (RSE), were used to study D variation of EEG signals with seizures. It was found that the denoising operation had an important influence on D variation trend. Moreover, the D variation obtained by RSE algorithm was larger than that by Higuchi algorithm, because the non-fractal nature of EEG signals during normal status could be detected and quantified by RSE algorithm. The above findings in this study could be promising to make more understandings of the nonlinear nature and scaling behaviors of EEG signals

    Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons.

    No full text
    GABAA receptors distributed in somatodendritic compartments play critical roles in regulating neuronal activities, including spike timing and firing pattern; however, the properties and functions of GABAA receptors at the axon are still poorly understood. By recording from the cut end (bleb) of the main axon trunk of layer -5 pyramidal neurons in prefrontal cortical slices, we found that currents evoked by GABA iontophoresis could be blocked by picrotoxin, indicating the expression of GABAA receptors in axons. Stationary noise analysis revealed that single-channel properties of axonal GABAA receptors were similar to those of somatic receptors. Perforated patch recording with gramicidin revealed that the reversal potential of the GABA response was more negative than the resting membrane potential at the axon trunk, suggesting that GABA may hyperpolarize the axonal membrane potential. Further experiments demonstrated that the activation of axonal GABAA receptors regulated the amplitude and duration of action potentials (APs) and decreased the AP-induced Ca2+ transients at the axon. Together, our results indicate that the waveform of axonal APs and the downstream Ca2+ signals are modulated by axonal GABAA receptors

    A pretest planning method for model calibration for nonlinear systems

    No full text
    With increasing demands on more flexible and lighter engineering structures, it has been more common to take nonlinearity into account. Model calibration is an important procedure for nonlinear analysis in structural dynamics with many industrial applications. Pretest planning plays a key role in the previously proposed calibration method for nonlinear systems, which is based on multi-harmonic excitation and an effective optimization routine. This paper aims to improve the pretest planning strategy for the proposed calibration method. In this study, the Fisher information matrix (FIM), which is calculated from the gradients with respect to the chosen parameters with unknown values, is used for determining the locations, frequency range, and the amplitudes of the excitations as well as the sensor placements. This pretest planning based model calibration method is validated by a structure with clearance nonlinearity. Synthetic test data is used to simulate the test procedure. Model calibration and K-fold cross validation are conducted for the optimum configurations selected from the pretest planning as well as three other configurations. The calibration and cross validation results show that a more accurate estimation of parameters can be obtained by using test data from the optimum configuration

    Scaling Region of Weierstrass-Mandelbrot Function: Improvement Strategies for Fractal Ideality and Signal Simulation

    No full text
    Fractal dimension (D) is widely utilized in various fields to quantify the complexity of signals and other features. However, the fractal nature is limited to a certain scope of concerned scales, i.e., scaling region, even for a theoretically fractal profile generated through the Weierstrass-Mandelbrot (W-M) function. In this study, the scaling characteristics curves of profiles were calculated by using the roughness scaling extraction (RSE) algorithm, and an interception method was proposed to locate the two ends of the scaling region, which were named corner and drop phenomena, respectively. The results indicated that two factors, sampling length and flattening order, in the RSE algorithm could influence the scaling region length significantly. Based on the scaling region interception method and the above findings, the RSE algorithm was optimized to improve the accuracy of the D calculation, and the influence of sampling length was discussed by comparing the lower critical condition of the W-M function. To improve the ideality of fractal curves generated through the W-M function, the strategy of reducing the fundamental frequency was proposed to enlarge the scaling region. Moreover, the strategy of opposite operation was also proposed to improve the consistency of generated curves with actual signals, which could be conducive to practical simulations

    Roughness Scaling Extraction Accelerated by Dichotomy-Binary Strategy and Its Application to Milling Vibration Signal

    No full text
    Fractal algorithms for signal analysis are developed from geometric fractals and can be used to describe various complex signals in nature. A roughness scaling extraction algorithm with first-order flattening (RSE-f1) was shown in our previous studies to have a high accuracy, strong noise resistance, and a unique capacity to recognize the complexity of non-fractals that are common in signals. In this study, its disadvantage of a long calculation duration was addressed by using a dichotomy-binary strategy. The accelerated RSE-f1 algorithm (A-RSE-f1) retains the three above-mentioned advantages of the original algorithm according to theoretical analysis and artificial signal testing, while its calculation speed is significantly accelerated by 13 fold, which also makes it faster than the typical Higuchi algorithm. Afterwards, the vibration signals of the milling process are analyzed using the A-RSE-f1 algorithm, demonstrating the ability to distinguish different machining statuses (idle, stable, and chatter) effectively. The results of this study demonstrate that the RSE algorithm has been improved to meet the requirements of practical engineering with both a fast speed and a high performance

    Scaling Region of Weierstrass-Mandelbrot Function: Improvement Strategies for Fractal Ideality and Signal Simulation

    No full text
    Fractal dimension (D) is widely utilized in various fields to quantify the complexity of signals and other features. However, the fractal nature is limited to a certain scope of concerned scales, i.e., scaling region, even for a theoretically fractal profile generated through the Weierstrass-Mandelbrot (W-M) function. In this study, the scaling characteristics curves of profiles were calculated by using the roughness scaling extraction (RSE) algorithm, and an interception method was proposed to locate the two ends of the scaling region, which were named corner and drop phenomena, respectively. The results indicated that two factors, sampling length and flattening order, in the RSE algorithm could influence the scaling region length significantly. Based on the scaling region interception method and the above findings, the RSE algorithm was optimized to improve the accuracy of the D calculation, and the influence of sampling length was discussed by comparing the lower critical condition of the W-M function. To improve the ideality of fractal curves generated through the W-M function, the strategy of reducing the fundamental frequency was proposed to enlarge the scaling region. Moreover, the strategy of opposite operation was also proposed to improve the consistency of generated curves with actual signals, which could be conducive to practical simulations
    corecore