13 research outputs found

    An energy-aware and Q-learning-based area coverage for oil pipeline monitoring systems using sensors and Internet of Things

    Get PDF
    Pipelines are the safest tools for transporting oil and gas. However, the environmental effects and sabotage of hostile people cause corrosion and decay of pipelines, which bring financial and environmental damages. Today, new technologies such as the Internet of Things (IoT) and wireless sensor networks (WSNs) can provide solutions to monitor and timely detect corrosion of oil pipelines. Coverage is a fundamental challenge in pipeline monitoring systems to timely detect and resolve oil leakage and pipeline corrosion. To ensure appropriate coverage on pipeline monitoring systems, one solution is to design a scheduling mechanism for nodes to reduce energy consumption. In this paper, we propose a reinforcement learning-based area coverage technique called CoWSN to intelligently monitor oil and gas pipelines. In CoWSN, the sensing range of each sensor node is converted to a digital matrix to estimate the overlap of this node with other neighboring nodes. Then, a Q-learning-based scheduling mechanism is designed to determine the activity time of sensor nodes based on their overlapping, energy, and distance to the base station. Finally, CoWSN can predict the death time of sensor nodes and replace them at the right time. This work does not allow to be disrupted the data transmission process between sensor nodes and BS. CoWSN is simulated using NS2. Then, our scheme is compared with three area coverage schemes, including the scheme of Rahmani et al., CCM-RL, and CCA according to several parameters, including the average number of active sensor nodes, coverage rate, energy consumption, and network lifetime. The simulation results show that CoWSN has a better performance than other methods

    SecAODV: A Secure healthcare routing scheme based on hybrid cryptography in wireless body sensor networks

    Get PDF
    In recent decades, the use of sensors has dramatically grown to monitor human body activities and maintain the health status. In this application, routing and secure data transmission are very important to prevent the unauthorized access by attackers to health data. In this article, we propose a secure routing scheme called SecAODV for heterogeneous wireless body sensor networks. SecAODV has three phases: bootstrapping, routing between cluster head nodes, and communication security. In the bootstrapping phase, the base station loads system parameters and encryption functions in the memory of sensor nodes. In the routing phase, each cluster head node calculates its degree based on several parameters, including, distance, residual energy, link quality, and the number of hops, to decide for rebroadcasting the route request (RREQ) message. In the communication security phase, a symmetric cryptography method is used to protect intra-cluster communications. Also, an asymmetric cryptography method is used to secure communication links between cluster head nodes. The proposed secure routing scheme is simulated in the network simulator version 2 (NS2) simulator. The simulation results are compared with the secure multi tier energy-efficient routing scheme (SMEER) and the centralized low-energy adaptive clustering hierarchy (LEACH-C). The results show that SecAODV improves end-to-end delay, throughput, energy consumption, packet delivery rate (PDR), and packet loss rate (PLR)

    A secure routing approach based on league championship algorithm for wireless body sensor networks in healthcare

    Get PDF
    Patients must always communicate with their doctor for checking their health status. In recent years, wireless body sensor networks (WBSNs) has an important contribution in Healthcare. In these applications, energy-efficient and secure routing is really critical because health data of individuals must be forwarded to the destination securely to avoid unauthorized access by malicious nodes. However, biosensors have limited resources, especially energy. Recently, energy-efficient solutions have been proposed. Nevertheless, designing lightweight security mechanisms has not been stated in many schemes. In this paper, we propose a secure routing approach based on the league championship algorithm (LCA) for wireless body sensor networks in healthcare. The purpose of this scheme is to create a tradeoff between energy consumption and security. Our approach involves two important algorithms: routing process and communication security. In the first algorithm, each cluster head node (CH) applies the league championship algorithm to choose the most suitable next-hop CH. The proposed fitness function includes parameters like distance from CHs to the sink node, remaining energy, and link quality. In the second algorithm, we employs a symmetric encryption strategy to build secure connection links within a cluster. Also, we utilize an asymmetric cryptography scheme for forming secure inter-cluster connections. Network simulator version 2 (NS2) is used to implement the proposed approach. The simulation results show that our method is efficient in terms of consumed energy and delay. In addition, our scheme has good throughput, high packet delivery rate, and low packet loss rate

    Reinforcement Learning-Based Routing Protocols in Flying Ad Hoc Networks (FANET): A Review

    No full text
    In recent years, flying ad hoc networks have attracted the attention of many researchers in industry and universities due to easy deployment, proper operational costs, and diverse applications. Designing an efficient routing protocol is challenging due to unique characteristics of these networks such as very fast motion of nodes, frequent changes of topology, and low density. Routing protocols determine how to provide communications between drones in a wireless ad hoc network. Today, reinforcement learning (RL) provides powerful solutions to solve the existing problems in the routing protocols, and designs autonomous, adaptive, and self-learning routing protocols. The main purpose of these routing protocols is to ensure a stable routing solution with low delay and minimum energy consumption. In this paper, the reinforcement learning-based routing methods in FANET are surveyed and studied. Initially, reinforcement learning, the Markov decision process (MDP), and reinforcement learning algorithms are briefly described. Then, flying ad hoc networks, various types of drones, and their applications, are introduced. Furthermore, the routing process and its challenges are briefly explained in FANET. Then, a classification of reinforcement learning-based routing protocols is suggested for the flying ad hoc networks. This classification categorizes routing protocols based on the learning algorithm, the routing algorithm, and the data dissemination process. Finally, we present the existing opportunities and challenges in this field to provide a detailed and accurate view for researchers to be aware of the future research directions in order to improve the existing reinforcement learning-based routing algorithms

    Reinforcement Learning-Based Routing Protocols in Flying Ad Hoc Networks (FANET): A Review

    No full text
    In recent years, flying ad hoc networks have attracted the attention of many researchers in industry and universities due to easy deployment, proper operational costs, and diverse applications. Designing an efficient routing protocol is challenging due to unique characteristics of these networks such as very fast motion of nodes, frequent changes of topology, and low density. Routing protocols determine how to provide communications between drones in a wireless ad hoc network. Today, reinforcement learning (RL) provides powerful solutions to solve the existing problems in the routing protocols, and designs autonomous, adaptive, and self-learning routing protocols. The main purpose of these routing protocols is to ensure a stable routing solution with low delay and minimum energy consumption. In this paper, the reinforcement learning-based routing methods in FANET are surveyed and studied. Initially, reinforcement learning, the Markov decision process (MDP), and reinforcement learning algorithms are briefly described. Then, flying ad hoc networks, various types of drones, and their applications, are introduced. Furthermore, the routing process and its challenges are briefly explained in FANET. Then, a classification of reinforcement learning-based routing protocols is suggested for the flying ad hoc networks. This classification categorizes routing protocols based on the learning algorithm, the routing algorithm, and the data dissemination process. Finally, we present the existing opportunities and challenges in this field to provide a detailed and accurate view for researchers to be aware of the future research directions in order to improve the existing reinforcement learning-based routing algorithms

    An Area Coverage Scheme Based on Fuzzy Logic and Shuffled Frog-Leaping Algorithm (SFLA) in Heterogeneous Wireless Sensor Networks

    No full text
    Coverage is a fundamental issue in wireless sensor networks (WSNs). It plays a important role in network efficiency and performance. When sensor nodes are randomly scattered in the network environment, an ON/OFF scheduling mechanism can be designed for these nodes to ensure network coverage and increase the network lifetime. In this paper, we propose an appropriate and optimal area coverage method. The proposed area coverage scheme includes four phases: (1) Calculating the overlap between the sensing ranges of sensor nodes in the network. In this phase, we present a novel, distributed, and efficient method based on the digital matrix so that each sensor node can estimate the overlap between its sensing range and other neighboring nodes. (2) Designing a fuzzy scheduling mechanism. In this phase, an ON/OFF scheduling mechanism is designed using fuzzy logic. In this fuzzy system, if a sensor node has a high energy level, a low distance to the base station, and a low overlap between its sensing range and other neighboring nodes, then this node will be in the ON state for more time. (3) Predicting the node replacement time. In this phase, we seek to provide a suitable method to estimate the death time of sensor nodes and prevent possible holes in the network, and thus the data transmission process is not disturbed. (4) Reconstructing and covering the holes created in the network. In this phase, the goal is to find the best replacement strategy of mobile nodes to maximize the coverage rate and minimize the number of mobile sensor nodes used for covering the hole. For this purpose, we apply the shuffled frog-leaping algorithm (SFLA) and propose an appropriate multi-objective fitness function. To evaluate the performance of the proposed scheme, we simulate it using NS2 simulator and compare our scheme with three methods, including CCM-RL, CCA, and PCLA. The simulation results show that our proposed scheme outperformed the other methods in terms of the average number of active sensor nodes, coverage rate, energy consumption, and network lifetime

    A Q-Learning and Fuzzy Logic-Based Hierarchical Routing Scheme in the Intelligent Transportation System for Smart Cities

    No full text
    A vehicular ad hoc network (VANET) is the major element of the intelligent transportation system (ITS). The purpose of ITS is to increase road safety and manage the movement of vehicles. ITS is known as one of the main components of smart cities. As a result, there are critical challenges such as routing in these networks. Recently, many scholars have worked on this challenge in VANET. They have used machine learning techniques to learn the routing proceeding in the networks adaptively and independently. In this paper, a Q-learning and fuzzy logic-based hierarchical routing protocol (QFHR) is proposed for VANETs. This hierarchical routing technique consists of three main phases: identifying traffic conditions, routing algorithm at the intersection level, and routing algorithm at the road level. In the first phase, each roadside unit (RSU) stores a traffic table, which includes information about the traffic conditions related to four road sections connected to the corresponding intersection. Then, RSUs use a Q-learning-based routing method to discover the best path between different intersections. Finally, vehicles in each road section use a fuzzy logic-based routing technique to choose the foremost relay node. The simulation of QFHR has been executed on the network simulator version 2 (NS2), and its results have been presented in comparison with IRQ, IV2XQ, QGrid, and GPSR in two scenarios. The first scenario analyzes the result based on the packet sending rate (PSR). In this scenario, QFHR gets better the packet delivery rate by 2.74%, 6.67%, 22.35%, and 29.98% and decreases delay by 16.19%, 22.82%, 34.15%, and 59.51%, and lowers the number of hops by 6.74%, 20.09%, 2.68%, and 12.22% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively. However, it increases the overhead by approximately 9.36% and 11.34% compared to IRQ and IV2XQ, respectively. Moreover, the second scenario evaluates the results with regard to the signal transmission radius (STR). In this scenario, QFHR increases PDR by 3.45%, 8%, 23.29%, and 26.17% and decreases delay by 19.86%, 34.26%, 44.09%, and 68.39% and reduces the number of hops by 14.13%, 32.58%, 7.71%, and 21.39% compared to IRQ, IV2XQ, QGrid, and GPSR, respectively. However, it has higher overhead than IRQ (11.26%) and IV2XQ (25%)

    An energy-aware routing method using firefly algorithm for flying ad hoc networks

    No full text
    Flying ad-hoc networks (FANETs) include a large number of drones, which communicate with each other based on an ad hoc model. These networks provide new opportunities for various applications such as military, industrial, and civilian applications. However, FANETs have faced with many challenges like high-speed nodes, low density, and rapid changes in the topology. As a result, routing is a challenging issue in these networks. In this paper, we propose an energy-aware routing scheme in FANETs. This scheme is inspired by the optimized link state routing (OLSR). In the proposed routing scheme, we estimate the connection quality between two flying nodes using a new technique, which utilizes two parameters, including ratio of sent/received of hello packets and connection time. Also, our proposed method selects multipoint relays (MPRs) using the firefly algorithm. It chooses a node with high residual energy, high connection quality, more neighborhood degree, and higher willingness as MPR. Finally, our proposed scheme creates routes between different nodes based on energy and connection quality. Our proposed routing scheme is simulated using the network simulator version 3 (NS3). We compare its simulation results with the greedy optimized link state routing (G-OLSR) and the optimized link state routing (OLSR). These results show that our method outperforms G-OLSR and OLSR in terms of delay, packet delivery rate, throughput, and energy consumption. However, our proposed routing scheme increases slightly routing overhead compared to G-OLSR

    A cluster-tree-based trusted routing algorithm using Grasshopper Optimization Algorithm (GOA) in Wireless Sensor Networks (WSNs).

    No full text
    In wireless sensor networks (WSNs), existing routing protocols mainly consider energy efficiency or security separately. However, these protocols must be more comprehensive because many applications should guarantee security and energy efficiency, simultaneously. Due to the limited energy of sensor nodes, these protocols should make a trade-off between network lifetime and security. This paper proposes a cluster-tree-based trusted routing method using the grasshopper optimization algorithm (GOA) called CTTRG in WSNs. This routing scheme includes a distributed time-variant trust (TVT) model to analyze the behavior of sensor nodes according to three trust criteria, including the black hole, sink hole, and gray hole probability, the wormhole probability, and the flooding probability. Furthermore, CTTRG suggests a GOA-based trusted routing tree (GTRT) to construct secure and stable communication paths between sensor nodes and base station. To evaluate each GTRT, a multi-objective fitness function is designed based on three parameters, namely the distance between cluster heads and their parent node, the trust level, and the energy of cluster heads. The evaluation results prove that CTTRG has a suitable and successful performance in terms of the detection speed of malicious nodes, packet loss rate, and end-to-end delay

    A Q-learning-based smart clustering routing method in flying Ad Hoc networks

    No full text
    © 2024 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Flying ad hoc networks (FANETs) have particular importance in various military and civilian applications due to their specific features, including frequent topological changes, the movement of drones in a three-dimensional space, and their restricted energy. These features have created challenges for designing cluster-based routing protocols. In this paper, a Q-learning-based smart clustering routing method (QSCR) is suggested in FANETs. In QSCR, each node discovers its neighbors through the periodic exchange of hello messages. The hello time interval is different in each cluster, and cluster leaders determine this interval based on the average speed similarity. Next, an adaptive clustering process is presented for categorizing drones in the clusters. In this step, the cluster leader is selected based on a new parameter called merit value, which includes residual energy, centrality, neighbor degree, speed similarity, and link validity time. Then, a centralized Q-learning model is presented to tune weight coefficients related to merit parameters dynamically. In the last step, the routing process is done using a greedy forwarding technique. Finally, QSCR is run on NS2, and the simulation results of QSCR are compared with those of ICRA, WCA, and DCA. These results show that QSCR carries out the clustering process rapidly but has less cluster stability than ICRA. QSCR gets energy efficiency and improves network lifetime. In the routing process, QSCR has a high packet delivery rate compared to other schemes. Also, the number of isolated clusters created in QSCR is less than other clustering methods. However, the proposed scheme has a higher end-to-end delay than ICRA. Also, this scheme experiences more communication overhead than ICRA slightlyPeer reviewe
    corecore